⁴³Cr ε2p decay (21.2 ms) 2012Au08,2011Po01,2007Do17

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	C. D. Nesaraja, E. A. Mccutchan	NDS 133, 1 (2016)	30-Sep-2015	

Parent: ⁴³Cr: E=0.0; $J^{\pi}=(3/2^+)$; $T_{1/2}=21.2$ ms 7; $Q(\varepsilon 2p)=11770$ SY; $\% \varepsilon 2p$ decay=11.6 10

⁴³Cr-Q(ε 2p): deduced by evaluators from Q(β^+) for ⁴³Cr=15620 syst 400 and S(2p) for ⁴³V=3850 40, with both values from 2012Wa38.

⁴³Cr-%ε2p decay: %ε2p=11.6 *10* (2012Au08) deduced by authors from relative β2p branching 12.7 % *10* (2012Au08) and total proton branching 91.0% *23* (weighted average of 92.5% *28* (2007Do17) and 88% *4* (2011Po01). Others: 7.1 *4* (2011Po01), 6 5 (1992Bo37).

2012Au08: ⁴³Cr activity from fragmentation of ⁵⁸Ni beam with E=75 MeV/nucleon on a natural Ni target. Ions separated with the LISE3 spectrometer and identified through measurements of magnetic rigidity, energy loss and velocity using two silicon detectors and micro-channel plate detectors. Measured %branching and energy sharing between the two proton emission using a time projection chamber.

2011Po01: ⁴³Cr activity from fragmentation of ⁵⁸Ni beam with E=161 MeV/nucleon on a natural Ni target. Products selected with the A1900 fragment separator and identified through time-of-flight and energy loss measurements. Measured two proton decay, %branching using an optical time projection chamber.

Others: 2007Do17, 2001Gi01 (also 2001Gi02), 1992Bo37.

Total energy of the emitted two protons has been measured as 4246 15 (2007Do17) and 4292 22 (2001Gi01).

2012Au08 find a ratio of 34%-66% of the total energy for each proton and an isotopic distribution for the relative angle between the two emitted protons. Both of these results support a sequential emission of protons via intermediate states in ⁴²Ti.

⁴¹Sc Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} [†]
0	7/2-	596.3 ms 17

[†] From the Adopted Levels.