⁴²Ca(t, α) 1968Sa09

Type Author Citation Literature Cutoff Date

Full Evaluation C. D. Nesaraja, E. A. Mccutchan NDS 133, 1 (2016)

30-Sep-2015

1968Sa09: E(t)=12.8 MeV. Measured $\sigma(\theta)$ with θ =12.5° to 87.5° using multi-angle spectrograph and Ilford K1 emulsions (FWHM \approx 30 keV); DWBA analysis.

Other: 1978En02 quote values which are renormalized to S=4.5 for the ground state.

⁴¹K Levels

E(level)	L [†]	S [‡]	Comments
0	2	2.5	$d\sigma/d\Omega$ =1.2 mb/sr I (at 20°).
982 10	0	0.71	
1301 <i>10</i>	3	0.39	
1594 <i>10</i>	0+2	0.2,0.3	S: approximate values for a doublet.
1703 <i>10</i>	(2)	0.11	
2447 10	(0,2)		
2674 10	(0)	0.34	
2755 10			
3233 10			
3491 <i>10</i>	(2)	0.38	
4075 10			

[†] From comparison to DWBA predictions and empirical systematics.

[‡] From DWBA analysis using $d\sigma/d\omega_{exp}=NS\sigma_{DWBA}(\theta)$ and taking N=45. Normalization is determined by requiring that the $^{48}\text{Ca}(t,\alpha)^{47}\text{K}$ 359 keV transition contains the full shell-model $d_{3/2}$ strength of 4.0. It is assumed that l=0 transitions are $2s_{1/2}$, l=2 transitions are $1d_{3/2}$ and l=3 transitions are $1f_{7/2}$ in character.