42 Ca(d,t) 1969Yn01

Type Author Citation Literature Cutoff Date

Full Evaluation C. D. Nesaraja, E. A. Mccutchan NDS 133, 1 (2016)

30-Sep-2015

1969Yn01: E(d)=21.4 MeV from Argonne cyclotron. Scattered particles detected with a (dE/dx)-E telescope of surface barrier detectors with FWHM=70-130 keV. Measured $\sigma(\theta)$. Extracted spectroscopic factors from DWBA analysis code JULIE.

⁴¹Ca Levels

E(level)	J^{π}	L	C^2S	Comments
0	7/2-	3	2	
1940 <i>40</i>	3/2-	1	0.3	
2010 40	$3/2^{+}$	2	2.4	
2470 <i>40</i>			>0.015	L: 1969Yn01 list L=1 in Table II, but no $\sigma(\theta)$ distribution is shown in Figure 4 of their paper. This level is populated weakly in (d,t).
2670 40	$1/2^{+}$	0	0.46	
2970 40	$(1/2^+)$	0,(3)	0.026	J^{π} ,L,C ² S: This level could be fitted with L=3 with J^{π} =(5/2 ⁻ ,7/2 ⁻) and C ² S= 0.13. J^{π} =7/2 ⁻ in (p,t) and (³ He, $\alpha\gamma$).
3450 <i>40</i>	$1/2^{+}$	0	0.12	E(level): from Figure 4 and text of 1969Yn01. 3410 in Table II.
3520 40	$(5/2^+)$	2	0.30	C^2S : for 1d3/2 orbital.
3740 <i>40</i>	(3/2+)		>0.1	L: 1969Yn01 list L=2 in Table II, but no $\sigma(\theta)$ distribution is shown in figure 4 of their paper. The authors state that this state was not excited with sufficient intensity to extract a reliable $\sigma(\theta)$.
3840 <i>40</i>	$1/2^{+}$	0	0.12	
3920 40	$(1/2^+)$	0	0.12	
4150 <i>40</i>	$(5/2^+)$	2	0.46	C^2S : for 1d5/2 orbital.