$C(^{44}S,^{40}Si\alpha\gamma)$ 2012Ta20

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015					

2012Ta20: E=385 MeV/nucleon ⁴⁸Ca primary beam with an average intensity of 70 pnA was produced at the RIBF facility at RIKEN and incident on a 15-mm-thick rotating beryllium target. A secondary ⁴⁴S beam was analyzed by the BigRIPS fragment separator and accelerated to E=210 MeV/nucleon with an intensity of 4×10^4 pps. The secondary target was a 2.54 g/cm² carbon foil. Reaction products were analyzed by the ZeroDegree spectrometer and identified using the energy loss (ionization chamber), magnetic rigidity and time-of-flight (plastic scintillators); γ rays were detected by the DALI2 array of 186 NaI(Tl) detectors surrounding the reaction target (20% efficiency, FWHM=10% at E γ =1 MeV). Measured E γ , I γ , particle- γ -coin. Deduced levels, J^{π} , rapid deformation development of Si isotopes. Comparison with shell-model calculations.

⁴⁰Si Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0 985 11	$ \frac{0^{+}}{2^{+}} $	
1614? <i>14</i> 2524? <i>19</i>	$(0^+,2^+,4^+)^{\prime\prime}$ $(4^+)^{\#}$	E(level): this level is tentatively assigned by authors based on $\gamma\gamma$ -coin as the first 4 ⁺ state predicted by
		shell-model calculations. Resulting energy ratio between the first 4^+ and 2^+ states is $R_{4/2}=2.565$. Another possible candidate for the first 4^+ state is 1614 keV from the 629 $\gamma \rightarrow$ 985 γ cascade (2012Ta20).

[†] From $E\gamma$ data.

[‡] Predicted by shell-model calculations.

[#] From shell-model calculations 2012Ta20 suggest that the 2524 level is the first 4⁺ state and that the 1624 level has $J^{\pi}=0$ or 2⁺. They do not rule out the possibility that the 1624 level is the 4⁺ state; however, they argue that the systematics of E(4⁺)/E(2⁺) ratio of neighbouring nuclei favors the first alternative.

$\gamma(^{40}\text{Si})$

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
629 8 985 <i>11</i>	1614? 985	$(0^+, 2^+, 4^+)$ 2^+	985 0	$\frac{2^{+}}{0^{+}}$
1539 16	2524?	(4 ⁺)	985	2^{+}

$C(^{44}S,^{40}Si\alpha\gamma)$ 2012Ta20

Level Scheme

 $^{40}_{14}{
m Si}_{26}$