Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

 $Q(\beta^{-}) = -11.67 \times 10^{3} \ 16$; $S(n) = 14422 \ 24$; $S(p) = 529.6 \ 29$; $Q(\alpha) = -5531.2 \ 28 \ 2012Wa38$

S(2n)=32120 200 (syst), S(2p)=6300.5 28, Q(\varepsilon p)=5994.9 28 (2012Wa38).

⁴⁰Ca(γ , π^-): 1985To14, 1982To10: E=400 MeV. Measured σ , deduced pion production. 1973Gr21: E=340 MeV. Measured σ . Additional information 1.

 40 Ca(π^+,π): 1987Bo43, 1986Ir02, 1986Er09, 1984Er03, 1984Bo51, 1983Ba13, 1982Ba50: E=120, 165, 230 MeV. Measured $\sigma(\theta)$.

⁴⁰Ca(*π*+,*π*+*π*⁻): 2001Ca53, 2000Bo38, 2000Gr28, 1999Bo25, 1997Bo15, 1996Bo09: E=283 MeV, measured pion invariant mass spectra.

 40 Ca(⁶Li,⁶He): 1974Ga11: E=38 MeV. Upper limits on cross sections estimated for excitation energy up to 1700 as: <2.5 μ b for 10° <0.4 μ b for 30°. No peaks were observed in ⁶He spectra.

⁴⁰Ca(⁶Li,⁶He): 1980GuZW: E=92 MeV. Measured σ , deduced T=1 magnetic giant resonance. Details of this study are not available.

Delayed 2-proton radioactivity of ⁴²Cr to levels in ⁴⁰Sc is possible but none has been detected by 2001Gi01. An unexplained proton group at 2490 30 from ⁴²Cr decay could be an L=0 2-proton transition from IAS to first excited 0⁺ state in ⁴⁰Sc, but no γ rays were observed.

In $({}^{12}C, {}^{12}B)$, 1988Vo06 identify population of 1⁺ states in 4.9-5.0 MeV region at low angles; a 6⁻ state near 6 MeV at larger angles; and strong low-lying states of unnatural parity characterized by L=1, L=3 and L=5 transitions giving rise to 2⁻, 4⁻ and 6⁻ states, respectively. Population of a spin-flip dipole resonance $(J^{\pi}=0^{-},1^{-},2^{-})$ is suggested by strong enhancement of cross section in the 7-15 MeV range.

All levels populated in 40 Ti ε decay are proton unbound.

⁴⁰Sc Levels

Cross Reference (XREF) Flags

A	⁴⁰ Ti	ε	decay	(52.4	ms)
---	------------------	---	-------	-------	-----

- **B** ${}^{40}\text{Ca}({}^{3}\text{He,t})$
- $C = {}^{40}Ca({}^{12}C, {}^{12}B)$
- **D** 40 Ca(p,n),(pol p,n)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	4-	182.3 ms 7	BCD	$\%\varepsilon + \%\beta^+ = 100; \ \%\varepsilon\alpha = 0.017 \ 5; \ \%\varepsilon p = 0.44 \ 7$
				J^{π} : log ft=4.7 to 5 ⁻ , log ft=4.8 to 3 ⁻ (see ⁴⁰ Sc ε decay),
				$T_{1/2}$: weighted average of 179 ms 2 (1962Sc08), 186 ms 4 (1966An01), 182.7 ms 8 (1968Ar03), and 183 ms 3 (1972Mo08).
				$\% \epsilon \alpha$, $\% \epsilon p$: from 1982Ho09.
				dominant configuration= $(\pi f_{7/2}, \nu d_{3/2}^{-1})$ (1986Ch19) in (p,n).
34.3 15	(3 ⁻)		BCD	T=1
				dominant configuration= $(\pi f_{7/2}, \nu d_{3/2}^{-1})$ (1986Ch19) in (p,n).
772.1 16	(2^{-})		BCD	XREF: C(740).
				J ^{π} : from DWBA analysis of $\sigma(\theta)$ in (³ He,t) and L(¹² C, ¹² B)=(1) from 0 ⁺ .
893.5 20	(5 ⁻)		BCD	
1670.7 <i>19</i>	$(1^{-}\&2^{-})$		В	J ^{π} : from DWBA analysis of $\sigma(\theta)$ for a possible triplet in (³ He,t).
1703.2 22			В	
1797.0 24	(3 ⁻)		В	J^{π} : from $\sigma(\theta)$.
1871 <i>3</i>	. ,		В	
1933 <i>3</i>			В	
2276 7	1+		Α	
2370 4	(4 ⁻)		ΒD	XREF: D(2300).

Continued on next page (footnotes at end of table)

Other reactions:

Adopted Levels (continued)

⁴⁰Sc Levels (continued)

E(level) [†]	J <i>π</i> ‡	XREF	Comments
			E(level): from (³ He,t). J ^{π} : from DWIA analysis of $\sigma(\theta)$ in (p,n) for a complex structure and DWBA analysis of $\sigma(\theta)$ in (³ He,t). In higher-energy (³ He,t) experiments of 1984Ta11, a 1 ⁺ level at 2370 is proposed from $\sigma(\theta)$ data with the speculation that this state may be the analog of T=1 10310, 1 ⁺ state or T=1 9400, 0 ⁺ state in ⁴⁰ Ca.
2746 7	1+	A D	dominant configuration= $(\pi f_{7/2}, vs_{1/2})$ (1986Ch19) in (p,n). T=1 XREE: D(2700)
2933 11	1+	Α	AKLI : D(2700).
3030	(3^{-})	В	J^{π} : from DWBA analysis of $\sigma(\theta)$ in (³ He.t).
3135 17	1+	AB	XREF: B(3140).
3221 60	1+	Α	
3330 17	1+	AB	XREF: B(3360).
3409 62	1+	AB	XREF: B(3450).
3494 8		AB	XREF: A(3534).
			E(level): uncertain in 40 Ti ε decay.
3648 9	1+	Α	
3780 9	1+	Α	
3.9×10 ³ 1	(1 ⁻ ,2 ⁻)	A D	XREF: A(?). E(level),J ^{π} : from DWIA analysis of $\sigma(\theta)$ for a complex structure in (p,n). E=3856 42 from ⁴⁰ Ti s decay
4060 22	1+	Δ	II & decay.
4129 21	1+	Δ	
4264 9	1+	A D	XREF: D(4300)
1201 2	1		E(level): from 40 Ti ε decay, complex structure in (p,n).
4359 8	0^+	A	T=2 J^{π} : log <i>ft</i> =3.26 from 0 ⁺ ; IAS of ⁴⁰ Ti g.s.
4518 12	1+	Α	
4649 11	1+	Α	
4819 <i>19</i>	1+	Α	
4895? 15		Α	
5014 22	1+	Α	
5080 29	1+	Α	
5221? 29		Α	
5354 62	1+	Α	
5567 41	1+	Α	
5702 21	1+	Α	
5879 82	1+	Α	
6005 20	1+	Α	
6120 62	1+	Α	
6419 62	1+	Α	
$7.5 \times 10^3 25$	(6 ⁻)	D	T=1 J^{π} : from DWIA analysis of $\sigma(\theta)$ for a complex structure in (p,n). dominant configuration (cf. ud^{-1}) (1082 A n06, 1086 Ch 10) in (n n)
12.9×10 ³ 37	(0^-,1^-,2^-)	AB D	Communic configuration= $(\pi_{17/2}, vd_{5/2})$ (1985An06, 1986Cn19) in (p,n). XREF: D(12000). E(level): from (³ He,t).
			J [*] : from DWIA analysis of $\sigma(\theta)$ for a giant resonance in (p,n).

[†] From (³He,t) for levels up to E=1933 keV and from ⁴⁰Ti ε decay, unless otherwise noted. [‡] 1⁺ assignments for levels above E=1933 keV are from ⁴⁰Ti ε decay based on log *ft*<5.2 from 0⁺; assignments for levels up to E=1933 keV are from DWBA analysis of $\sigma(\theta)$ in (³He,t) if applicable, unless otherwise noted.