⁴⁰Ca(p,n),(pol p,n) **1986Ch19**

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015		

1986Ch19: (pol p,n): E=134 MeV polarized beam (also E=135 MeV unpolarized beam) was produced from the Indiana University Cyclotron Facility (IUCF). Target was a 29.2 mg/cm² 99.97% enriched ⁴⁰Ca (19.0 mg/cm² for unpolarized beam). Neutrons were detected in large-volume, mean-timed fast-plastic scintillators and neutron energies were determined from neutron time-of-flight (71-m flight path with FWHM=220-415 keV, and 125.2-m flight path for unpolarized beam with FWHM=220-350 keV). Measured $\sigma(\theta)$, analyzing power, polarization transfer coefficients. Deduced levels, J, π , L from comparisons with DWIA calculations. See also 1987Wa31, 1986Wa28, 1986ChZQ.

Other measurements:

2004Wa14, 2002Wa06, 1999Wa08: (pol p,pol n): E=345 MeV. Measured σ and analyzing power.

2002Ha14: (pol p,n) E=197 MeV. Measured polarization transfer coefficients, $\sigma(E,\theta)$.

1996Wa09, 1994Wa24: (pol p,pol n) E=135 MeV. Measured $\sigma(\theta)$, Deduced isovector spin-dipole resonances.

1994Ta24, 1993Ch13: (pol p,pol n) E=494 MeV. Measured polarization transfer coefficients. Deduced isovector spin response.

1994Sa36: (pol p,n) E=50, 80 MeV. Measured polarization transfer coefficients.

Additional information 1.

1987Ra23: (p,n) E=7-9 MeV. Measured thick target γ and neutron yields.

1984NaZX: (p,n) E=119.3 MeV. Measured σ . Deduced strength for for 1⁺ states.

1983Ta16: (p,n) E=59.3, 118.3, 159.3 MeV. Measured $\sigma(\theta)$. Deduced Gamow-Teller transition strengths.

1983An06: (p,n) E=133.5 MeV. Measured $\sigma(\theta)$. Deduced levels.

1981Ga26: (p,n) E=200 MeV. Measured $\sigma(\theta)$. Deduced resonances.

1980KnZX: (p,n) E=60, 135 MeV. Measured $\sigma(\theta)$.

1969Ov01, 1966Br17: (p,n) E=2-20 MeV. Measured σ . Deduced Q value.

2001Ka19: (pol p,n): calculations and comparison with data.

⁴⁰Sc Levels

E(level) [†]	$J^{\pi \ddagger}$	L&	Comments
0@	4-	3	T=1
			E(level): analog of the 4^- , T=1 state at E=7.7 MeV in 40 Ca (1986Ch19).
0			dominant configuration= $(\pi f_{7/2}, vd_{3/2}^{-1})$ (1986Ch19).
30 [@]	(3-)	3	T=1
-			dominant configuration= $(\pi f_{7/2}, v d_{3/2}^{-1})$ (1986Ch19).
770 [@]	(2 ⁻)		Strongly populated state.
890 [@]	(5 ⁻)		
2.3×10 ^{3#} 1	(4 ⁻)	3	dominant configuration= $(\pi f_{7/2}, v s_{1/2}^{-1})$ (1986Ch19).
2.7×10 ³ 1	1+	0	T=1
			E(level): analog of the 1^+ , T=1 state at E=10.3 MeV in 40 Ca (1983Ta16, 1986Ch19).
3.9×10 ^{3#} 1	(1 ⁻ ,2 ⁻)	(1)	
4.3×10 ^{3#} 1	1+	0	
7.5×10 ^{3#} 25	(6 ⁻)	(5)	T=1
			E(level), J^{π} , L: for a complex between 5 and 10 MeV. E(level) is taken as the median value of the range.
			dominant configuration= $(\pi f_{7/2}, v d_{5/2}^{-1})$ (1983An06, 1986Ch19).
12×10 ^{3#} 6	(0^-,1^-,2^-)	1	E(level), J^{π} , L: for a giant resonance between 6 and 18 MeV. E(level) is taken as the median value of the range.

[†] From 1986Ch19, unless otherwise noted.

 \ddagger As proposed by 1986Ch19, parentheses are added evaluator.

Complex structure.

40 Ca(p,n),(pol p,n) 1986Ch19 (continued)

⁴⁰Sc Levels (continued)

[@] 0+30 and 770+890 form unresolved structures. Energies are rounded values from Adopted Levels.

[&] From 1986Ch19, based on comparisons of measured $\sigma(\theta)$ and analyzing powers with DWIA calculations.