Coulomb excitation 1996Sc31,2006Da08

Type Author		Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

1996Sc31: ¹⁹⁷Au(⁴⁰S,⁴⁰S' γ) E=39.5 MeV/nucleon ⁴⁰S beam was produced by fragmentation of ⁴⁸Ca primary beams with energy up to 80 MeV/nucleon and intensity as high as 5pnA provided from the K1200 cyclotron at NSCL on a 379 mg/cm² ⁹Be primary target. The secondary target was a 184.1 mg/cm² gold. γ rays were detected by an array of 42 position-sensitive NaI(Tl) detectors. Measured E γ , γ yield, γ (particle)-coin. Deduced level energy, B(E2), deformation parameter. Comparison with shell-model calculations.

2006Da08 (also 2006St21): ¹⁹⁷Au(⁴⁰S,⁴⁰S' γ) E≈40 MeV/nucleon ⁴⁰S beam was produced by fragmentation of 140 MeV/nucleon primary beam provided from the Cyclotron Facility of NSCL on a 1 g/cm² ⁹Be target. Fragments were separated by the A1900 fragment separator. The secondary target was 355 mg/cm² gold. Projectiles were detected with a plastic scintillator and γ rays were detected with 14 HPGe detectors of the SeGA array. Measured E γ , I $\gamma(\theta,H,t)$, (particle) γ -coin. Deduced g-factor using transient field technique. Comparison with shell-model calculations.

⁴⁰S Levels

E(level)	J^{π}	T _{1/2}	Comments		
0 891 <i>13</i>	0 ⁺ 2 ⁺	14.1 ps +17-14	$\begin{array}{l} B(E2)\uparrow=0.0334 \; 36 \; (1996\text{Sc}31) \\ \mu=-0.02 \; 12 \; (2006\text{Da}08) \\ E(\text{level}); \; \text{from } E\gamma \; (1996\text{Sc}31). \\ J^{\pi}: \; \text{Coulomb excited from 0}^+. \\ T_{1/2}: \; \text{deduced by evaluator from measured B(E2) in 1996\text{Sc}31 \; \text{and adopted } E\gamma=903.68 \; 9 \; \text{in} \\ \text{Adopted Gammas.} \\ \text{g-factor}=-0.01 \; 6 \; (2006\text{Da}08). \\ \mu: \; \text{from measured g-factor}=-0.01 \; 6 \; \text{using transient field technique } (2006\text{Da}08). \\ \underline{\gamma(^{40}\text{S})} \end{array}$		

Eγ	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	
891 <i>13</i>	891	2+	0	0^{+}	E2	E_{γ} : from 1996Sc31.

Comments

Coulomb excitation 1996Sc31,2006Da08

