⁴⁰**P** β⁻ decay (150 ms) **2001Wi21**

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

Parent: 40 P: E=0.0; J $^{\pi}$ =(2⁻,3⁻); T_{1/2}=150 ms 8; Q(β ⁻)=14.76×10³ 11; % β ⁻ decay=100.0

2001Wi21: 40 P was produced in the fragmentation of 48 Ca beam at E=70 MeV/nucleon on a Be target followed by analysis using using A1200 fragment separator. The decays of the implanted ions were studied by two Ge detectors and one thin plastic scintillator. Measured E γ , I γ , $\gamma\gamma$, $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin, decay curve. Deduced levels, J, π , parent $T_{1/2}$, γ -ray and β -decay branching ratios. Comparison with Geometrical Collective Model (GCM) calculations.

Others: 2003Gr22, 1989Le16.

⁴⁰S Levels

E(level)	$J^{\pi \dagger}$	Comments				
0.0	0+					
903.69 7	2+					
1916.84 <i>21</i>	(4^{+})					
2254.79 12	(4^{+})	J^{π} : (2 ⁺) assigned by 2001Wi21 in ⁴⁰ P β^- decay based on probable member of 2-phonon triplet.				
3236.1 <i>3</i>						
3489.46 18	(1^{-})					
3947.0 <i>3</i>						
4138.30 20	$(1^-,2^-,3^-)^{\ddagger}$					
4724.61 23	. , , ,	J^{π} : suggested by 2001Wi21 as possible member of 3-phonon triplet since the level decays to				
		members of 2-phonon triplet.				
5009.4 <i>4</i>	$(1^-,2^-,3^-)^{\ddagger}$					
S(n)+x	(- ,- ,-)	$S(n)(^{40}S)=7750\ 50,\ x<7010.$				

[†] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger #}$	Log ft [‡]	Comments
$(4 \times 10^3 ^{@} 4)$	S(n)+x	15.8 <i>21</i>		$Iβ^-$: $%β^-$ n=15.8 21 (from 40 P Adopted Levels).
$(9.75 \times 10^3 \ 11)$	5009.4	11.3 16	5.3	av E β =4589 89
$(1.004 \times 10^4 \ 11)$	4724.61	7.5 12	5.6	av E β =4730 89
$(1.062\times10^4\ 11)$	4138.30	29.8 26	5.1	av E β =5019 89
$(1.081 \times 10^4 \ II)$	3947.0	3.4 5	6.1	av E β =5113 89
$(1.127 \times 10^4 \ II)$	3489.46	14.1 18	5.5	av E β =5338 89
$(1.152 \times 10^4 \ II)$	3236.1	0.7 3	6.9	av E β =5463 89
$(1.251 \times 10^4 \ 11)$	2254.79	1.6 9	6.7	av E β =5946 89
$(1.386 \times 10^4 \ 11)$	903.69	9.6 27	6.1	av Eβ=6611 89

[†] Deduced by 2001Wi21 from γ-ray intensity imbalance at each level, with all γ-ray intensities normalized to measured absolute $I(903.7\gamma)=63\%$ 3. It is found that 6% 5 feeding remains unaccounted for. Since $J(^{40}P \text{ g.s.})=2,3$ does not allow significant feeding to ^{40}S ground state (<3% for the first forbidden unique decay of $^{2-}$ to $^{0+}$), this feeding may go to higher unobserved levels,

 $^{^{40}\}text{P-J}^{\pi}$, $T_{1/2}$: From Adopted Levels of ^{40}P .

 $^{^{40}}$ P-Q(β⁻): From 2012Wa38.

 $^{^{40}}$ P-% β ⁻ decay: % β ⁻n=15.8 21, deduced by 2001Wi21 by comparing the intensities of γ rays in the A=39 and A=40 mass chains produced in the measurement since 40 P is the only member of the A=40 mass chain and no members of the A=39 or lighter mass chains were present in the separated beam.

[‡] 2001Wi21 suggest J^{π} not 1⁻, since no g.s. transition observed.

⁴⁰P β⁻ decay (150 ms) 2001Wi21 (continued)

β^- radiations (continued)

although, no escape peaks are observed by 2001Wi21 for γ rays above 4.2 MeV. All β^- feedings should be considered as upper limits due to a large energy window available between the reported level at 5009 and Q value of 14510.

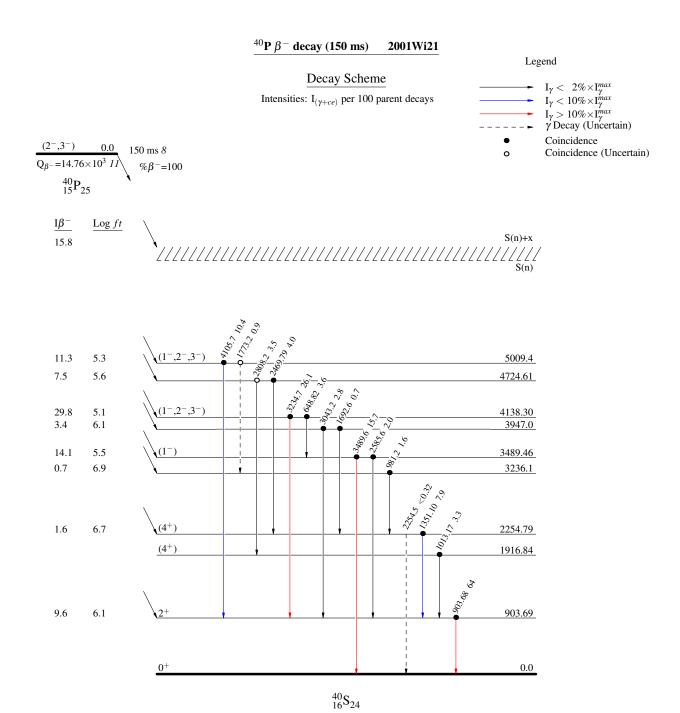
γ (⁴⁰S)

Iy normalization: From measured absolute intensity of 903.7γ based on the known decay branches for 40 Cl (2001Wi21). The following γ rays are assigned to 39 S from β-n decay of 40 P: 339.88 11 (4.6 5), 398.61 14 (6.1 9), 465.45 19 (4.5 9) (2001Wi21).

E_{γ}	$\mathrm{I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
648.82 15	5.7 5	4138.30	$(1^-,2^-,3^-)$	3489.46 (1-)	
x834.90 8	5.7 17	000.00	a.t	0.0	
903.68 9	100 2	903.69	2+	$0.0 0^{+}$	
981.2 <i>4</i>	2.5 4	3236.1		$2254.79 (4^{+})$	
1013.17 20	5.2 12	1916.84	(4^{+})	903.69 2+	
1351.10 <i>14</i>	12.5 9	2254.79	(4^{+})	903.69 2+	
1692.6 9	1.1 4	3947.0		2254.79 (4+)	
1773.2 [‡] 7	1.4 4	5009.4	$(1^-,2^-,3^-)$	3236.1	
2254.5 [‡] 9	< 0.5	2254.79	(4^{+})	$0.0 0^{+}$	
2469.79 20	6.4 9	4724.61		$2254.79 (4^{+})$	
x2550.4 5	1.7 4				in coin with 903γ .
2585.6 <i>4</i>	3.2 6	3489.46	(1^{-})	903.69 2+	,
^x 2614.8 3	2.6 9				
2808.2 9	5.5 15	4724.61		1916.84 (4 ⁺)	
3043.2 <i>4</i>	4.4 5	3947.0		903.69 2+	
3234.7 <i>4</i>	41.5 29	4138.30	$(1^-,2^-,3^-)$	903.69 2+	
3489.6 <i>4</i>	24.9 24	3489.46	(1^{-})	$0.0 0^{+}$	
4105.7 4	16.5 23	5009.4	$(1^-, 2^-, 3^-)$	903.69 2+	

[†] For absolute intensity per 100 decays, multiply by 0.63 3.

[‡] These values should be considered as lower limits since some of the decay strength may be shifted to higher (unobserved) states due to a large energy gap between the Q-value and the highest observed level in 2001Wi21.


[#] Absolute intensity per 100 decays.

[®] Estimated for a range of levels.

[‡] Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

 $^{40}_{16}\mathrm{S}_{24}$ -3

