Adopted Levels

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 140, 1 (2017) 30-Sep-2015

 $Q(\beta^-)=14.76\times10^3\ 11$; $S(n)=3.32\times10^3\ 14$; $S(p)=17.68\times10^3\ 14$; $Q(\alpha)=-16.45\times10^3\ 15$ 2012Wa38 $S(2n)=9550\ 140$, $S(2p)=38860\ 270$, $Q(\beta^-n)=7020\ 120\ (2012Wa38)$.

First identification of ⁴⁰P nuclide by 1979Au03.

Mass measurement: 2007Ju03, 2001Sa21 (also 2001Sa72), 1991Zh24.

2003Gr22: 40 P produced by fragmentation of 48 Ca beam at 60 MeV/ nucleon with a 9 Be target followed by separation of fragments by LISE3 spectrometer; measured β , γ , $T_{1/2}$. See also 2004Gr28, 2004Gr20.

2001Wi21: ⁴⁰P was produced in the fragmentation of ⁴⁸Ca beam at E=70 MeV/nucleon with a Be target followed by analysis using using A1200 fragment separator.

Others:

1989Le16: 40 P formed and identified in 181 Ta(48 Ca,X). Measured $T_{1/2}$ and $\%\beta^-$ n.

1979We10: ⁴⁰P produced in ⁹Be(⁴⁸Ca,X) at 212 MeV/nucleon.

1979Au03: ⁴⁰P produced in ²³⁸U(Ar,X) at 263 MeV. Measured fractional-charge parameter versus A. Deduced evidence for ³⁷Si, ⁴⁰P, ^{41,42}S.

1999YoZW, in a preliminary result, suggested that ⁴¹Si decays dominantly (>50%) by β^- n decay to ⁴⁰P, but final details of this study are not yet available.

⁴⁰P Levels

E(level) J^{π} $T_{1/2}$ Comments $(2^{-},3^{-})$ 150 ms 8 $\%\beta^{-}=100; \%\beta^{-}=15.8 \ 2I \ (2001 \text{Wi}21); \%\beta^{-}2n=?$ Theoretical $T_{1/2}=210 \ \text{ms}, \%\beta^{-}n=10.8, \%\beta^{-}2n=0.26 \ (2003 \text{Mo}09).$ J^{π} : probable feeding (log $f_{1}=6.1$) of 2^{+} state. Possible coupling of $\pi 1/2[211]$ and $\nu 5/2[312]$ (see discussion in 2001 Wi21). $T_{1/2}$: weighted average of 153 ms 8 (2001 Wi21) and 125 ms 25 (2003 Gr22). Other: 260 ms $+100-60 \ (1989 \text{Le}16).$ $\%\beta^{-}$ n from 2001 Wi21. Other: 30 $I0 \ (1989 \text{Le}16).$