C(⁴²Si,⁴⁰Mg) **2014Cr02**

History

Type Author Citation Literature Cutoff Date
Full Evaluation Balraj Singh ENSDF 21-May-2021

This dataset is adapted from a dataset in the XUNDL database, compiled by M.S. Basunia (LBNL), Dec 3, 2014. Two-proton knockout reaction from ⁴²Si beam.

2014Cr02: secondary 42 Si beam was produced at RIBF-RIKEN facility in 9 Be 48 Ca,X),E=345 MeV/nucleon primary fragmentation reaction, with an average intensity of approximately 70 pnA for 48 Ca beam. Projectile-like fragments were selected using Bρ-ΔΕ-Βρ method through the BigRIPS fragment separator. The 42 Si beam was incident on 4.02 g/cm² thick carbon target placed at the focal point of the ZeroDegree spectrometer (ZDS). Outgoing particles were identified in A/Q and Z through event-by-event analysis by Bρ-ΔΕ-TOF method using the ZDS spectrometer. Deduced inclusive cross section for 2p knockout from 42 Si. Comparison with shell model calculations using the SDPFU-Si and SDPF- μ interactions. A total of five events of 40 Mg were observed for $^{9.65}\times10^5$ incident 42 Si particles.

⁴⁰Mg Levels

E(level) J⁷

Comments

0+

A prolate deformation for the ⁴⁰Mg g.s. was suggested by 2014Cr02.

Measured inclusive cross section= $40 \, \mu b + 27 \cdot 17$ for 2p knockout from 42 Si, which is in agreement with the theoretical total σ =67 μb for 0^+ g.s. and first 2^+ state (51 μb for the g.s. and 16 μb for the first 2^+ state), indicating that only the g.s. 0^+ is bound in 40 Mg, considering S(n)(40 Mg)=2000 keV 720 and S(2n)(40 Mg)=1870 710 (syst,2017Wa10), and predicted excited 0^+ state at 1683 keV from shell-model calculations (2014Cr02).