$C(^{41}Al,^{40}Mg\gamma)$ **2019Cr02**

	Hi	story	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	ENSDF	21-May-2021

Includes $H(^{41}Al, ^{40}Mg)$, as the target is polyethylene $(C_2H_4)_n$.

First report of observation of two γ rays in ⁴⁰Mg, and a tentative excited state in ⁴⁰Mg, populated through one-proton knockout from ⁴¹Al.

2019Cr02: ⁴¹Al secondary beam was produced in ⁹Be(⁴⁸Ca,X), E=345 MeV/nucleon primary reaction at RIBF-RIKEN facility. Rotating ⁹Be target was 2.8 mg/cm² thick. Projectile-like secondary fragments were selected using Bρ-ΔE-Bρ method through the BigRIPS fragment separator. Cocktail beam (consisting of ⁴¹Al and ⁴⁰Al) was incident on 3.82 g/cm² thick polyethylene ((C₂H₄)_n) target placed at the focal point of the ZeroDegree spectrometer (ZDS). Outgoing particles were identified in A/Q and Z through event-by-event analysis by the Bρ-ΔE-TOF method using the ZDS spectrometer, and γ rays were detected using DALI2 array of 186 NaI(Tl) detectors. Measured Eγ, Iγ, γ rays in coincidence with incoming ⁴¹Al beam particles and ⁴⁰Mg outgoing particles. Deduced level and J^{π} in ⁴⁰Mg. Comparison with shell-model calculations.

⁴⁰Mg Levels

E(level)	\mathbf{J}^{π}	Comments
0	0^{+}	
500 14	(2^{+})	E(level), J^{π} : tentative level proposed by 2019Cr02. Authors note that energy is $\approx 20\%$ lower than that predicted
		by shell-model calculations and experimental systematics of ^{38}Mg and ^{36}Mg (Fig. 3 in 2019Cr02).

$\gamma(^{40}Mg)$

Eγ	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
500 14	500	(2^+)	0	0^{+}	Observed counts=74 <i>I5</i> (stat) 9(syst). As this γ ray is more intense by ≈ 2.5 times than the 670 γ , it is assigned from the first excited state.
^x 670 16					Observed counts=30 10(stat) 5(syst).
					Due to limited statistics, coincidence relationship of 500γ and 670γ could not be determined.
					Several scenarios were considered by 2019Cr02 for the placement of this γ ray. From model calculations and experimental systematics of the first 2 ⁺ and 4 ⁺ states, a possible 4 ⁺ state at 1170 keV, assuming cascade of 670 γ and 500 γ , was rejected, as the level energy, and E(first 4 ⁺)/E(first 2 ⁺) ratio of 2.34 were lower than expected. An oblate excited 0 ⁺ state at 1170 keV was also considered unlikely by the authors, on the basis of level energy and systematics of proton removal cross sections in neighboring nuclides. Second excited 2 ⁺ state at 1170 keV was also considered, but then there should be an 1170 keV as a second excited 2 ⁺ state at 1170 keV was also considered.
					counts, which could not be ruled out within the experimental uncertainties.

 $x \gamma$ ray not placed in level scheme.

<u>C(⁴¹Al,⁴⁰Mgγ)</u> 2019Cr02

Level Scheme

 $^{40}_{12}Mg_{28}$