Adopted Levels, Gammas

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh	ENSDF	21-May-2021						

 $Q(\beta^{-})=20730 SY; S(n)=1300 SY; S(p)=27720 SY; Q(\alpha)=-24850 CA$ 2021Wa16,2019Mo01

 $Q(\alpha)$ from 2019Mo01 (theory), others from 2021Wa16.

Estimated uncertainties (2017Wa10): $\Delta Q(\beta^{-})=580$, $\Delta S(n)=720$, $\Delta S(p)=900$.

S(2n)=670 710, Q(β⁻n)=19990 580 (syst,2021Wa16). S(2p)=53360 (theory,2019Mo01).

 $Q(\beta^{-}2n)=16940\ 520,\ Q(\beta^{-}3n)=15930\ 530,\ Q(\beta^{-}4n)=11320\ 530,\ Q(\beta^{-}5n)=9820\ 500,\ Q(\beta^{-}6n)=4120\ 500,\ Q(\beta^{-}7n)=1550\ 500,\ deduced by evaluator from mass values in 2021Wa16.$

First identification of ⁴⁰Mg nuclide as particle stable by 2007Ba71.

2007Ba71: W(⁴⁸Ca,X γ),E=141 MeV/nucleon beam from the National Superconducting Cyclotron Laboratory (NSCL). The fragments were separated with the A1900 fragment separator. Isotopic identification by multiple ΔE signals, magnetic rigidity, total energy and time of flight analysis. Detectors: plastic scintillators, parallel-plate avalanche counters (PPACs) and silicon PIN diodes. A total of three events were assigned to ⁴⁰Mg. This establishes stability of ⁴⁰Mg against particle emission.

2014Cr02: C(⁴²Si,⁴⁰Mg), two-proton knockout reactions from ⁴²Si at RIBF-RIKEN facility. Deduced inclusive cross section for 2p knockout from ⁴²Si. A total of five events of ⁴⁰Mg were observed for 9.65×10⁵ incident ⁴²Si nuclei.

2002Lu19 and 2002No11 (also 2003Pe31) searched for evidence for the production of ⁴⁰Mg nuclide in fragmentation of ⁴⁸Ca beam at 59, 64 MeV/nucleon bombarding a ¹⁸¹Ta target at RIKEN-RIPS facility. With a predicted cross section of 0.01 pb, only one event was expected; but none was observed. Thus the identification and particle stability of ⁴⁰Mg remained uncertain in this work.

As concluded by 2019Cr02, level structure of ⁴⁰Mg differs from that of the neighboring ³⁸Mg and ³⁶Mg nuclei, which the authors ascribe to possible weak-binding effects in the low-lying excitation spectrum. Their shell-model calculations are also not successful in reproducing the observed level energy of the first 2⁺ state.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 80 references for structure calculations. Additional information 1.

⁴⁰Mg Levels

Cross Reference (XREF) Flags

A	$C(^{41}Al,^{40}Mg\gamma)$
В	C(⁴² Si, ⁴⁰ Mg)

E(level)	\mathbf{J}^{π}	XREF	Comments
0	0^{+}	AB	$\%\beta^{-}=100; \ \%\beta^{-}n=?; \ \%\beta^{-}2n=?; \ \%\beta^{-}3n=?; \ \%\beta^{-}4n=?$
			$\%\beta^{-5}n^{-2}; \ \%\beta^{-6}n^{-2}; \ \%\beta^{-7}n^{-2}?$
			β^- is the only possible decay mode, followed by β -delayed neutron emissions, thus 100% β^- decay is assigned by inference.
			Theoretical $T_{1/2}$ =4.9 ms, $\%\beta^-n=61$, $\%\beta^-2n=14$, $\%\beta^-3n=6$, $\%\beta^-4n=0$, $\%\beta^-5n=0$, $\%\beta^-6n=0$, $\%\beta^-7n=0$ (2019Mo01).
			Theoretical $T_{1/2}=5.5$ ms, $\%\beta^-n=15.8$, $\%\beta^-2n=51.0$, $\%\beta^-3n=3.4$, $\%\beta^-4n=5.2$, $\%\beta^-5n=0.5$ (2016Ma12). Theoretical $T_{1/2}=2.4$ ms (2013Li39).
			$T_{1/2}$: half-life of the decay of ${}^{40}Mg$ has not yet been measured. $T_{1/2}>170$ ns from time-of-flight of ≈ 170 ns (Fig. 3 in 2007Ba71). From a general decreasing trend of half-lives with increasing neutron number, $T_{1/2}$ for ${}^{40}Mg$ g.s. is expected to be <5 ms, based on measured half-lives of 20 ms for ${}^{34}Mg$, 11.3 ms for ${}^{35}Mg$, and 3.9 ms for ${}^{36}Mg$ available in the ENSDF database (as of May 13, 2021). Other:
500 14	(2+)	A	E(level),J ^{π} : tentative level proposed by 2019Cr02. Authors note that energy is \approx 20% lower than that predicted by shell-model calculations and experimental systematics of ³⁸ Mg and ³⁶ Mg (Fig. 3 in 2019Cr02).

Adopted Levels, Gammas (continued)

 $\gamma(^{40}Mg)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	J_f^π
500	(2^+)	500 14	100	0	0^+

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{40}_{12}Mg_{28}$