³⁹K(n,γ),(n,n):resonances 2006MuZX,1984Ma40,1973Si32

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

 $J^{\pi}(^{39}\text{K g.s.})=3/2^+$.

2006MuZX: Compilation of thermal neutron induced σ and resonance parameter data for nuclei of Z=1-100.

1984Ma40: E=1-152 keV neutron beams were provided by the Oak Ridge Electron Linear Accelerator (ORELA). Target was a natural potassium sample (93.26% in ³⁹K). Neutron energies were measured using time-of-flight with a 40-m flight path. Capture γ rays were detected by a pair of nonhydrogenous liquid scintillators. Measured yields. Deduced resonance energies, J, widths. A total of 64 resonances reported up to E_n(lab)=152.0 keV.

1973Si32 (also 1971SiYI): E=1-200 keV. Natural target. A total 35 resonances (8 tentative) assigned to 40 K, up to E_n(lab)=193.1 keV. Deduced resonance energies, J, L(n), widths.

Others:

2008GuZQ: E=10-64 keV. Measured E γ , I γ . Deduced σ .

1960La05: analysis of resonance data.

1958Go01: total neutron cross sections in keV region.

⁴⁰K Levels

All resonance parameters including resonance neutron energies, J^{π} , L, $g\Gamma_n$ and Γ_{γ} are directly adopted from the compilation in 2006MuZX and are based on data from 1984Ma40 and 1973Si32.

E(level) [†]	$J^{\pi \ddagger}$	$g\Gamma_n\Gamma_\gamma/\Gamma^{\#}$	L	E _n (lab) (keV)	Comments
7800.70 6	$(0 \text{ to } 3)^{-}$	0.0075 eV 5	1	1.108 1	$2g\Gamma_n = 0.015 \text{ eV } 1.$
7802.82 6	$(0 \text{ to } 3)^{-}$	0.0653 eV 2	1	3.281 3	$2g\Gamma_{n}=0.1000 \text{ eV } 15.$
7808.77 6	1+	0.172 eV 3	0	9.386 9	$2g\Gamma_n = 54 \text{ eV } 6, \Gamma_v = 0.463 \text{ eV } 8.$
7811.47 6		0.0412 eV 7		12.159 13	
7811.93 6	3-	0.2577 eV 15	1	12.626 13	$2g\Gamma_n = 1.3 \text{ eV} 3$, $\Gamma_{\gamma} = 0.488 \text{ eV} 5$.
7813.56 6	$(2)^{-}$	0.1176 eV 14	1	14.302 21	$2g\Gamma_n = 0.81 \text{ eV } 17, \Gamma_{\gamma} = 0.266 \text{ eV } 5.$
7815.18 6	2-	0.1496 eV 19	1	15.958 24	$2g\Gamma_n = 1.69 \text{ eV } 30, \Gamma_{\gamma} = 0.291 \text{ eV } 4.$
7815.91 6	(3 ⁻)	0.143 eV 2	(1)	16.715 14	$2g\Gamma_n = 0.320 \text{ eV } I, \Gamma_{\gamma} = 0.30 \text{ EV.}$
7823.96 7		0.1145 eV 20		24.97 <i>3</i>	- ,
7824.53 7	2+	0.246 eV 4	0	25.55 <i>3</i>	$2g\Gamma_n=118.4 \text{ eV } 34, \Gamma_{\gamma}=0.396 \text{ eV } 7.$
7827.26 7		0.2290 eV 15		28.36 <i>3</i>	
7830.98 7	3-	0.535 eV 8	1	32.17 3	$2g\Gamma_n=3.6 \text{ eV}, \Gamma_{\gamma}=0.869 \text{ eV}$ 19.
7832.10 7	2-	0.184 eV 8	1	33.32 <i>3</i>	$2g\Gamma_n = 16.2 \text{ eV } 11, \Gamma_{\gamma} = 0.301 \text{ eV } 14.$
7836.23 8	(2 ⁻)	0.207 eV 6	(1)	37.56 6	$2g\Gamma_n = 5.8 \text{ eV}, \Gamma_{\gamma} = 0.343 \text{ eV}$ 13.
7836.33 8	(2 ⁻)	0.194 eV 6	(1)	37.66 6	$2g\Gamma_n = 5.8 \text{ eV}, \Gamma_{\gamma} = 0.322 \text{ eV} 13.$
7841.26 7	2^{+}	0.63 eV 3	0	42.72 4	$2g\Gamma_n=674 \text{ eV} \ 32, \ \Gamma_{\gamma}=0.973 \text{ eV} \ 4.$
7843.62 8		0.115 eV 5		45.14 5	
7844.45 8	2-	0.386 eV 10	1	45.99 5	$2g\Gamma_n=52 \text{ eV } 2, \ \Gamma_{\gamma}=0.626 \text{ eV } 17.$
7850.42 8	$(2)^{-}$	0.220 eV 8	1	52.12 5	$2g\Gamma_n = 15.9 \text{ eV } 43$, $\Gamma_{\gamma} = 0.362 \text{ eV } 13$.
7852.62 8		0.129 eV 6		54.37 6	
7852.79 8	2-	0.261 eV 9	1	54.55 6	$2g\Gamma_n=20.4 \text{ eV } 54, \Gamma_{\gamma}=0.429 \text{ eV } 15.$
7853.39 8		0.134 eV 7		55.16 6	
7854.04 8		0.107 eV 7		55.83 6	
7855.97 8	1+	0.55 eV 5	0	57.81 6	$2g\Gamma_n = 804 \text{ eV } 80, \Gamma_{\gamma} = 1.47 \text{ eV } 13.$
7856.94 8		0.144 eV 8		58.80 6	
7857.99 8	1-	0.076 eV 8	1	59.88 6	$2g\Gamma_n=62 \text{ eV } 10, \Gamma_{\gamma}=0.203 \text{ eV } 21.$
7860.29 8		0.185 eV 8		62.24 6	
7866.25 9	1	0.67 eV 8	(0)	68.35 7	$2g\Gamma_n = 1454.00 \text{ eV } 18, \Gamma_{\gamma} = 1.78 \text{ eV } 21.$
7866.80 9		0.184 eV 12		68.92 7	
7873.43 10		0.053 eV 7		75.72 8	
7878.23 10		0.279 eV 12		80.64 8	
7878.74 10		0.175 eV 10		81.17 8	

Continued on next page (footnotes at end of table)

39 K(n, γ),(n,n):resonances 2006MuZX,1984Ma40,1973Si32 (continued)

⁴⁰K Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$g\Gamma_n\Gamma_\gamma/\Gamma^{\#}$	L	E _n (lab) (keV)	Comments
7882.37 10		0.095 eV 9		84.89 8	
7885.12 11	1-	0.11 eV 3	1	87.71 9	$2g\Gamma_{n}=350 \text{ eV } 40, \Gamma_{v}=0.283 \text{ eV } 43.$
7890.06 11		0.210 eV 17	1	92.78 9	$2g\Gamma_n = 36 \text{ eV } 9.$
7890.36 11		0.254 eV 17	1	93.09 9	
7893.94 12		0.278 eV 24		96.76 10	$2g\Gamma_{n}=225 \text{ eV } 20.$
7894.47 12		0.276 eV 24		97.31 10	$2g\Gamma_{n}=225 \text{ eV } 20.$
7896.32 12	2-	0.149 eV 19	1	99.20 10	$2g\Gamma_n = 142 \text{ eV} 32$, $\Gamma_v = 0.239 \text{ eV} 30$.
7899.05 21	2^{-}	0.221 eV 19	1	102.0 2	$2g\Gamma_n=45 \text{ eV } 13, \Gamma_v=0.358 \text{ eV } 31.$
7900.50 21		0.215 eV 19		103.49 20	
7901.41 21		0.299 eV 20		104.42 20	
7903.13 21		0.115 eV 17		106.19 20	
7905.46 21		0.180 eV 23		108.58 20	
7905.58 21	1^{+}	0.34 eV 9	0	108.7 2	$2g\Gamma_{n}=1500 \text{ eV} 320, \Gamma_{n}=0.96 \text{ eV} 24.$
7906.44 21		0.159 eV 21		109.59 20	
7906.81 21		0.133 eV 18		109.96 20	
7911.78 25		0.125 eV 15		115.06 25	
7914.07 25		0.49 eV 9		117.41 25	
7915.41 25		0.128 eV 15		118.79 25	$2g\Gamma_{n}=77 \text{ eV } 13.$
7916.7 <i>3</i>		0.198 eV 18		120.1 3	
7919.3 <i>3</i>	$(2)^{-}$	0.308 eV 21	1	122.8 3	$2g\Gamma_n=34 \text{ eV } 9, \Gamma_{\gamma}=0.503 \text{ eV } 36.$
7922.6 <i>3</i>	(2)	0.40 eV 3		126.2 <i>3</i>	$2g\Gamma_n = 53.0 \text{ eV } 56$, $\Gamma_{\gamma} = 0.654 \text{ eV } 61$.
7923.5 <i>3</i>		0.268 eV 20		127.1 3	
7924.3 <i>3</i>		0.04 eV 2		127.9 <i>3</i>	
7925.7 <i>3</i>		0.219 eV 20		129.4 3	
7931.5 <i>3</i>		0.25 eV 3		135.3 <i>3</i>	
7932.2 <i>3</i>		0.37 eV 4		136.0 <i>3</i>	
7932.8 <i>3</i>		0.66 eV 4		136.6 <i>3</i>	
7940.1 <i>3</i>	2^{-}	1.45 eV 6	1	144.1 <i>3</i>	$2g\Gamma_{n}=215 \text{ eV } 43.$
7941.0 <i>3</i>		0.24 eV 3		145.1 <i>3</i>	
7943.1 <i>3</i>		0.37 eV 4		147.2 <i>3</i>	
7944.0 <i>3</i>		0.33 eV 3		148.1 <i>3</i>	
7947.8 <i>4</i>		0.25 eV 4		152.0 4	
7949.6 4	(3^{-})		(1)	153.9 4	$2g\Gamma_{n}=1600 \text{ eV } 210.$
7957.8 4			(1)	162.3 4	$2g\Gamma_n = 940 \text{ eV } 110.$
7972.7 4	1		(1)	177.6 4	$2g\Gamma_n = 840 \text{ eV } 110.$
7983.1 5			1	188.3 5	$2g\Gamma_n=210 \text{ eV } 43.$
7987.8 5	1^{+}		0	193.1 5	$2g\Gamma_n = 750 \text{ eV } 150.$

[†] From $E_{c.m.}$ +S(n) where S(n)=7799.62 *6* (2012Wa38) and $E_{c.m.}$ deduced from E_n (lab) in 2006MuZX. [‡] L=0 gives 1⁺ or 2⁺ and L=1 gives 0⁻,1⁻,2⁻,3⁻, with further restriction from analysis of resonance data. [#] g=(2J+1)/8.