		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140,1 (2017)	30-Sep-2015

 $Q(\beta^{-})=1310.89 \ 6; \ S(n)=7799.62 \ 6; \ S(p)=7582 \ 5; \ Q(\alpha)=-6438.39 \ 7$ 2012Wa38

S(2n)=20877.37 20, S(2p)=18315.35 11 (2012Wa38).

First identification of 40 K nuclide by 1935Ni01 with a mass spectrograph (2012Th10).

Additional information 1. ⁴⁰K(α, α') E=24, 29 MeV: 1972Oe01, measured $\sigma(\theta)$.

 41 K(³He, α) E=24 MeV: 1973DeWO.

 41 K(3 He, $\alpha\gamma$) E=12.5 MeV: 1977McZQ: measured $\alpha\gamma$ coin, deduced three levels in 40 K near 4384 with T=2, IAS.

 45 Sc(p,⁶Li) E=45 MeV: 1970BeYK: measured $\sigma(\theta)$ for g.s. and some other unresolved structures which are strongly forward peaked.

Hyperfine structure, isotope-shifts, moments, etc. (measurements): 2014Pa45, 2014Kr04, 1997Si24, 1982Pe14, 1982Du19, 1981Le19, 1976Bo21, 1974Sa24, 1974Br12, 1972Jo09, 1969Jo06, 1968Ne05.

⁴⁰K Levels

See ${}^{39}K(n,\gamma),(n,n)$: resonances dataset for neutron resonant states in the excitation region: 7800.7 to 7987.8.

Cross Reference (XREF) Flags

Α	$^{12}C(^{30}Si,np\gamma)$	I	40 Ar(p,n γ)	Q	40 Ca(12 C, 12 N),(13 C, 13 N)
В	$^{26}Mg(^{16}O,np\gamma),^{27}Al(^{19}F,\alpha pn\gamma)$	J	40 Ar(3 He,t)	R	41 K(n,2n),(n,2n γ)
C	$^{37}\text{Cl}(\alpha,n\gamma)$	K	40 K(γ , γ):Mossbauer	S	41 K(p,d)
D	38 Ar(α ,d)	L	40 Ca($\mu^-, \nu\gamma$)	Т	41 K(d,t)
Е	39 K(n, γ),(pol n, γ) E=thermal	M	40 Ca(n,p γ),(n,p)	U	41 Ca(d, ³ He)
F	³⁹ K(d,p)	N	⁴⁰ Ca(pol d,2p),(d,2p)	V	42 Ca(p, ³ He)
G	39 K(d,p γ)	0	40 Ca(t, ³ He)	W	42 Ca(pol d, α),(d, α)
Н	40 Ar(p,n)	Р	40 Ca(⁷ Li, ⁷ Be),(⁷ Li, ⁷ Be γ)	X	39 K(n, γ),(n,n):resonances

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments				
0	4-	1.248×10 ⁹ y 3	ABCDEFG IjKLMNOpQRSTUVW					

⁴⁰K Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
				T _{1/2} : from 2004Ko09 and 2002Gr01 from measurements of specific activity of natural potassium salts using liquid-scintillation counting (LSC) technique. (2002Gr01 reported a value of 1.248×10 ⁹ y 2, later adjusted to 1.248×10 ⁹ y 3 by 2004Ko09 to correct the quoted uncertainty on measured isotopic abundance of ⁴⁰ K). Both papers used natural abundance of ⁴⁰ K as 0.01167% 2 (1975Ga24). The natural abundance of ⁴⁰ K as 0.0117% <i>1</i> (as recommended in the International Union of Pure and Applied Chemistry 70, 217 (1998), based on the measured value of 1975Ga24) would give about four times larger uncertainty on T _{1/2} . The earlier recommended values of 1.265×10 ⁹ y <i>13</i> (1999BeZS,1999BeZQ) based on recomputation of 1.277×10 ⁹ y 8 (evaluation by 1973EnVA); and 1.26×10 ⁹ y <i>1</i> (evaluation by 1990Ho28 from 14 different measurements out of a total of 34 measurements listed) are in good agreement. Variation of T _{1/2} due to environmental conditions has been reported. Earlier (pre-1977) measurements of partial (β ⁻ and ce) and/or total T _{1/2} of ⁴⁰ K: 1977Ce04, 1972Go21, 1966Fe09, 1965Le15, 1965Br25, 1962Fl05, 1961Gl07, 1960Sa31, 1960Eg01, 1959Ke26, 1957We43, 1950Ka22, 1947Gl07. Another 16 references (from 1931 to 1971) are listed by 1990Ho28 and in the 1978 Table of Isotopes (1978LeZA); but are not present in the NSR database. Additional information 2.
29.8299 5	3-	4.25 ns 6	BC EFG IjKLMNOpQ STU W	for $\delta v({}^{39}\text{K}, {}^{40}\text{K})$ =+125.6 MHz 3 from literature. Dominant configuration= $\pi 1 d_{3/2}^{-1} \otimes v(1f_{7/2} \text{ or } 2p_{3/2})$ (2014Pa45) from comparison with shell-model calculations. μ =-1.29 9 (1974Br12,2014StZZ) J ^{π} : L(t, ${}^{3}\text{He}$)=L(p,d)=L(d,t)=3, L(d, ${}^{3}\text{He}$)=2; π =natural in (pol d, α), γ (circ pol) in (n, γ) E=thermal. T _{1/2} : weighted average of 4.30 ns 6 from (α ,n γ), 4.24 ns 9 from (n, γ) E=thermal, 4.13 ns 12 from (γ , γ) and 3.88 ns 35 from (p,n γ). μ : using TDPAD method (1974Br12).
800.1431 <i>19</i>	2-	0.26 ps 5	CDEFG Ij MNOPQ STU W	Additional information 3. J^{π} : L(d, ³ He)=2, L(d,p)=L(p,d)=L(d,t)=1+3; $\gamma(\theta,\text{pol})$ in (p,n γ), $\gamma(\text{circ pol})$ in (n, γ) thermal; π =unnatural in (pol d, α).
891.394 <i>19</i>	5-	0.83 ps <i>18</i>	ABCDEFG Ij LM OpQ STU W	T _{1/2} : weighted average of 0.28 ps 7 from (α,nγ), 0.40 ps 8 from (d,pγ) and 0.22 ps 4 from (p,nγ). Additional information 4. J ^π : L(α,d)=L(t, ³ He)=5, L(d,p)=L(p,d)=L(d,t)=3, L(d, ³ He)=2; γ(θ,pol) in ²⁶ Mg(¹⁶ O,npγ). T _{1/2} : weighted average of 0.78 ps <i>18</i> from (α,nγ), 1.07 ps <i>23</i> from (d,pγ) and 0.73 ps <i>18</i> from (p,nγ). Other: 2.3 ps <i>10</i> from ²⁶ Mg(¹⁶ O,npγ). Additional information 5.

⁴⁰K Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XREF		Comments
1643.638 <i>11</i>	0+	0.336 µs 13	C EFG IJ LM O R T	. V	J ^{π} : L(p, ³ He)=0; $\gamma(\theta)$ in (p,n γ); anti-analog state. T _{1/2} : weighted average of 0.340 μ s 7 in (p,n γ) and 0.294 ν s 23 in (n,2n γ).
1959.071 <i>11</i>	2+	0.54 ps 8	C EFG IJ LM OP 1	. W	J ^{π} : L(t, ³ He)=2; $\gamma(\theta,\text{pol})$ in (p,n γ). T _{1/2} : weighted average of 0.69 ps <i>18</i> from (α ,n γ), 0.51 ps 8 from (p ,n γ). Other: 0.42 ps +29–15 from (d,p γ). Additional information 7.
2047.338 16	2-	0.32 ps 5	CEFGI Mo	W	J ^{π} : L(d,p)=1; $\gamma(\theta,\text{pol})$ in (p,n γ) and $\gamma(\text{circ pol})$ in (n, γ) E=thermal; unnatural parity in (pol d, α). Additional information 8. T _{1/2} : weighted average of 0.37 ps <i>11</i> from (α ,n γ), 0.31 ps 7 from (d p γ) and 0.32 ps 5 from (p, p γ)
2069.802 <i>20</i>	3-	0.43 ps 12	CDEFG I LM o	U	J ^{π} : L(d, ³ He)=0, L(α ,d)=3; $\gamma(\theta,\text{pol})$ in (p,n γ) and also $\gamma(\text{circ pol})$ in (n, γ). T _{1/2} : from (α ,n γ). Others: 0.26 ps +15–10 from (d,p γ), 0.73 ps +26–19 from (p,n γ).
2103.68 3	1-	0.46 ps 9	CEFGILMO		XREF: O(2091). J^{π} : L(t, ³ He)=L(d,p)=1; $\gamma(\theta)$ in (p,n γ) and also $\gamma\gamma(\theta)$ in in (n, γ) E=thermal. $T_{1/2}$: weighted average of 0.53 ps 14 from (α ,n γ), 0.36
2260.48 3	3+	65 fs 14	C EFG I LMnOp 7	.' W	ps 9 from (d,py) and 0.38 ps 12 from (p,ny). J^{π} : L(d,t)=2; π =unnatural in (pol d, α); $\gamma(\theta$,pol) in (p,n γ). $T_{1/2}$: weighted average of 59 fs 17 from (α ,n γ) and 69 fs 14 from (p,n γ). Other: 49 fs +55–29 from (d,p γ).
2289.868 11	1+	86 fs <i>19</i>	C EfGHIJ LMnOp 1	. vw	Additional information 10. XREF: H(2333). J^{π} : L(t, ³ He)=0+2; L(d,t)=2(+0); 646.223 γ D to 0 ⁺ . $T_{1/2}$: weighted average of 76 fs 21 from (α ,n γ) and 94
2290.551 22	3-	0.15 ps 3	CDEfG I LMn p	VW	Is 19 from (p,n γ). Other: 0.23 ps +24–13 from (d,p γ). J ^{π} : L(α ,d)=3; $\gamma(\theta$,pol) in (α ,n γ). T _{1/2} : weighted average of 0.15 ps 3 from (α ,n γ) and 0.155 ps 29 from (p,n γ). Other: 0.22 ps +14–9 from (d p γ)
2385? 10	+		1	2	J^{π} : L(d,t)=2.
2397.190 25	4-	35 fs 14	C EFG I LM O	UW	J^{π} : L(d, ³ He)=0; π =unnatural in (pol d, α). T ₁ α : from (α px). Other: <38 fs in (p px).
2419.160 <i>15</i>	2-	0.55 ps +16-11	CEFGILMO	W	J^{π} : L(d,p)=1; $\gamma\gamma(\theta)$ in (n,γ) E=thermal; $\gamma(\theta)$ in $(p,n\gamma)$; π =unnatural in (pol d, α). T _{1/2} : weighted average of 0.0.46 ps +30–18 from $(\alpha,n\gamma)$, and 0.73 ps 16 from $(p,n\gamma)$, and 0.28 ps +28–11 from $(d,n\gamma)$
2423.7? 8			Е		E(level): this level is proposed in 2013Fi01 in (n,γ) E=thermal only based on the placement of a 2688.1 γ from the 5111.9 level. But this level was neither observed in other work nor listed in Table 3 of populated levels in 2013Fi01. The evaluator have considered this level as guestionable.
2542.79 11	7+	1.09 ns 7	ABCD I O	W	$\mu = +4.1 7 (1976Bo21,2014StZZ)$ $J^{\pi}: \gamma(\theta, \text{pol}) \text{ in } (\alpha, n\gamma); \pi = \text{unnatural in } (\text{pol } d, \alpha).$ $T_{1/2}: \text{ weighted average of } 1.10 \text{ ns } 7 \text{ from } (^{16}\text{O}, np\gamma)$ and 1.05 ns 17 from $(\alpha, n\gamma).$ $\mu: \text{ using IPAD method } (1976Bo21). \text{ Other: } +4.4 11$ (recoil into gas, 1981Le19).

⁴⁰K Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
2558.1 10			Мо	t	
2575.93 3	2+	0.155 ps 26	CEFGI Mo	t W	J ^π : $\gamma(\theta)$ in (p,ηγ); L(d,p)=2. T _{1/2} : from (p,ηγ). Other: 0.14 ps +8-5 in (d,pγ), 0.078 ps 25 in (α,ηγ).
2626.00 3	0-	0.22 ps 5	C EFG I LM O	W	J^{π} : analyzing power in (pol d, α); L(d,p)=1; isotropic $\gamma(\theta)$ in (p,n γ).
2730.357 19	1	<28 fs	CEGHIJL O	W	XREF: H(2775). J ^π : spin from $\gamma(\theta)$ in (p,n γ); L(t, ³ He)=1 for a weak peak at 2724 indicates parity=-, while probable analog of the 10319, 1 ⁺ level in ⁴⁰ Ca according to 1979Gr09 in (e,e') suggests parity=+. T _{1/2} : from (p,n γ). Others: <50 fs in (α ,n γ), <83 fs in (d,p γ).
2746.91 5	3-	0.128 ps <i>31</i>	C EF I	W	J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 789 γ to 2 ⁺ , 2747.00 γ D+Q to 4 ⁻ ; $\gamma(\theta)$ in (p,n γ). Additional information 11. T _{1/2} : weighted average of 0.19 ps <i>11</i> in (α ,n γ) and 0.123 ps 3 <i>1</i> in (p,n γ).
2756.62 3	2+	<21 fs	CE Ij Mo	W	J^{π} : $\gamma(\theta)$ in (p,n γ); $J=2^{-}$ is ruled out by 1113.3 γ to 0^{+} and RUL.
2786.645 16	3+	<38 fs	CDEfg Ij o	W	$J_{1/2}^{\pi}$: rom (α , $n\gamma$). J^{π} : $\gamma(\theta, \text{pol})$ in (α , $n\gamma$). $T_{1/2}^{\pi}$: from ($n, n\gamma$). Other: <0.69 ns from ($d, n\gamma$).
2787.32 21	3-,4-	55 fs 21	C fg I o	Uw	$J_{1/2}^{\pi}$: from (p,r/). Solid: (0.05 ps from (0,p/). XREF: U(2800). J^{π} : L(d, ³ He)=0 from 7/2 ⁻ .
2807.88 7	(1,2) ⁻	0.14 ps 5	C EFG I LM O	W	$I_{1/2}$: from $(\alpha, n\gamma)$. Other: <28 is in $(p, n\gamma)$. J^{π} : L(d,p)=1 from $3/2^+$; $\gamma(\theta)$ in $(p, n\gamma)$. $T_{1/2}$: weighted average of 0.10 ps 7 in $(\alpha, n\gamma)$ and 0.16 ps 5 in $(p, n\gamma)$.
2878.99 12	6+	0.27 ps 10	ABC I O		XREF: O(2865). J^{π} : $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$ and $(^{16}\text{O}, np\gamma)$.
2950.9 6		35 fs 21	C F O		XREF: O(2938). $T_{1/2}: from (\alpha, n\gamma)$
2985.84 <i>3</i>	(2 ⁻ ,3 ⁺)	69 fs 28	CEF 0	W	XREF: O(3017). J^{π} : 1027.09 γ to 2 ⁺ , 2185.70 γ to 2 ⁻ , 695.31 γ and 2955.94 γ to 3 ⁻ ; π =unnatural in (pol d, α). $T_{1/2}$: from (α , $n\gamma$).
3027.976 23	(2 ⁻ ,3 ⁺)	<50 fs	CEF 0	W	XREF: O(3017). J^{π} : 1068.87 γ to 2 ⁺ , and 3027.7 γ to 4 ⁻ ; π =unnatural in (pol d, α). $T_{1/2}$: from (α , $n\gamma$).
3100.1 6	(4,5)+	69 fs 21	CDE j o	W	XREF: E(?). J ^π : L(α,d)=4; 2208.7γ to 5 ⁻ . T ₁ (α; from (α p ₂))
3109.56 4	1+,2+	<97 fs	EFG j o	W	J^{π} : L(d,p)=0 from 3/2 ⁺ .
3128.41 3	(2 ⁻ ,3 ⁺)	<21 fs	C EF O	W	XREF: O(3120). J^{π} : 838.8 γ to 1 ⁺ , 3128.06 γ to 4 ⁻ ; RUL for γ to 1 ⁺ . $T_{1/2}$: from (α ,n γ).
3146.50 5	1 ⁽⁻⁾		C EF HI	W	XREF: H(3204). J^{π} : $\gamma(\theta)$ in (p,n γ); L(d,p)=(1) from 3/2 ⁺ .
3153.82 7	(2 ⁻ ,3)	<21 fs	CE	W	J^{π} : 3153.5 γ to 4 ⁻ and 397.28 γ to 2 ⁺ ; 1100.13 γ from $(1,2)^{-}$.

⁴⁰K Levels (continued)

3228.62 2 28 fs 22 C EFG L 0 u H X REF: 0(3216)W(3230), F': L(t,He)=1+3 from 0 ⁺ ; π =unnatural in (pol do?), T(2: from (d.p?). 3293 /0 UNNATURAL 0 u H X REF: 0(3216)W(3230), F': L(t,He)=1+0; for 320; π =unnatural, $F \neq 0^-$ in (pol do?), T(2: from (d.p?). 3353.65 2 6'' F: L(t,He)=1+0; for 320; 3260 , to 4'. 3353.65 5 2 ⁻ EFG 0 H F': L(t,He)=1+0; 320; 327 , 3360, to 4'. 3353.65 5 2 ⁻ EF 0 H P': L(t,P)=1 from 320; 327 , 3380, 60; to 3'. 3414.34 2 2 ⁻ EF 0 H P': L(t,P)=1 from 320; 327 , 3380, 60; to 3'. 3448.10 (3.5) ⁺ D j 0 H''''''''''''''''''''''''''''''''''''	E(level) [†]	Jπ‡	$T_{1/2}^{\#}$	_		XRE	EF		Comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3228.62 5	2-	28 fs 22		C EFG	L	0	u W	T _{1/2} : from $(\alpha, n\gamma)$. XREF: O(3216)W(3236).
3293 10 UNNATURAL 0 u ii There (3272) , $T = unnatural, J^{2} \neq 0^{-1} in (pol da), 355, 46 22 (61) A 0 J^{2}: [C(1)2Hz)=(0+2); \pi=unnatural, J^{2} \neq 0^{-1} in (pol da), 335, 365, 52 J^{2}: [C(1)2Hz)=(0+2); \pi=unnatural, J^{2} \neq 0^{-1} in (pol da), 344, 343 2 J^{2}: [C(1)2Hz)=(10m 3/22; 3364, 60y to 4-7. 3414, 343 2+ EF 0 W J^{2}: [1795, 45y to 7; J^{2}: J^{2}: [1795, 45y to 7; J^{2}: J^{2}: J^{2}: [1795, 45y to 7; J^{2}: J^{2}: J^{2}: [1795, 45y to 7; J^{2}: J^{2}: J^{2}: J^{2}: J^{2}: [1795, 45y to 7; J^{2}: J$									J ^{π} : L(t, ³ He)=1+3 from 0 ⁺ ; π =unnatural in (pol d, α)).
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3293 10	UNNATURAL					0	u W	XREF: $O(3272)$. π : $I(t^{3}H_{0})=(0+2)$: π =unpatural $I^{\pi} \pm 0^{-1}$ in (pol)
353.54.02 (b) A 0 P: It (dap) = I from 3/2; 336.05 yr 0.4". 339.55.5 2" EFG 0 W P: It (dap) = I from 3/2; 338.05 yr 0.4". 339.55.5 2" EF 0 W P: It (dap) = I from 3/2; 338.465 yr 0.4". 341.34.3 2" EF 0 W P: It (dap) = 0.42 from 3/2; 338.465 yr 0.4". 341.34.3 2" EF 0 W P: It (dap) = 0.42 from 3/2; 338.465 yr 0.4". 344.8.40 (3,5)* D j 0 W REE: [Ot445). 566.09.4 2" EF 0 W P: It (dap) = 1 from 3/2*, a=unatural, if p40" in (p0 d.a). 3517.15 H 0 XREE: [Ot450]. XREE: [Ot450]. 3517.15 H 0 XREE: [Ot50]. XREE: [Ot60]. 3599.20.3 2" EF 0 W P: It (dap) = 1 from 3/2*, 1201.86 yt 0.4". 363.88 4 (1".2.3.4*) E W P: It (dap) = 1 from 3/2*, 1201.86 yt 0.4". 3712.98 9 (2)" EF 0 W P: It (dap) = 1 from 3/2*, 120.10 yt 0.4". 3712.98 9 (2)"	2252 16 22								$d,\alpha)$.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3353.46 22	(6')		Α			0		J^{π} : tentative assignment in (⁵⁰ S1,np γ).
339365 5 2 EF 0 W P: L(d,p)=1 from 3/2 ⁺ ; 3384.66y to 3 ⁻ . 3414.34 3 2 ⁺ EF 0 W P: L(d,p)=0+2 from 3/2 ⁺ ; 3384.66y to 3 ⁻ . 3439.18 3 (2 ⁺) E j 0 W P: L(d,p)=0+2 from 3/2 ⁺ ; 3384.66y to 3 ⁻ . 3439.18 3 (2 ⁺) E j 0 W RE: D(345). 3448.10 (3,5) ⁺ D j 0 W RE: D(345). 3486.09 4 2 ⁻ EF 0 W RE: H(303). NREF: H(3503). 3557.41 8 (1 ⁻ ,2 ⁺ ,3 ⁻ ,4 ⁺) E W NREF: H(3503). NREF: H(3503). 3557.41 8 (1 ⁻ ,2 ⁺ ,3 ⁻ ,4 ⁺) E W NREF: H(3503). NREF: H(3503). 3629.97 4 2 ⁻ ,3 ⁻ <69 fs	3367.94 10	$(2,3)^{-}$			EFG		0	W	J^{π} : L(d,p)=1 from 3/2 ⁺ ; 3368.0 γ to 4 ⁻ .
3414.34 3 2^+ EF o W F: $1(d_p)=0+2 \text{ from } 3/2^+; 334.66 \text{ yros}^-; 343.466 \text{ yros}^-; 3445.69 \text{ yros}^+; 343.466 \text{ yros}^-; 3445.69 \text{ yros}^+; 3445.69 \text{ yros}^-; \pi=unnatural in (pol d.a). 3486.09 4 2^- EF o W F: 1(d_p)=0+1 \text{ from } 3/2^+; \pi=unnatural, J^{\#}=0^- in (pol d.a). 3557.41 8 (1^-, 2^+, 3^-, 4^+) E W XREF: W(3568). F: 3526.99 \text{ yros}^-; 3-a4^+ \text{ preferred from } \pi=(natural) in (pol d.a). 3599.20 3 2^- EF o W F: 1(d_p)=0+1 \text{ from } 3/2^+; 1201.86 \text{ yros}^+; 1308.9 \text{ yros}^+; 1323.292 \text{ yros}^+; 37.4^+ \text{ preferred from } \pi=(natural) in (pol d.a). 3629.97 4 2^-, 3^- <69 fs$	3393.65 5	2-			EF		0	W	J ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural, $J^{\pi} \neq 0^{-}$ in (pol d, α).
3439.18.3 (2^+) E j o J^r : 1795.459 to r^r : favored by $\gamma\gamma(\theta)$ and $\gamma(circ pol)$ in (n_γ) . 3448.10 $(3,5)^+$ D j o W XREF: D(3445). 3486.09.4 2^- EF o W XREF: D(3445). E(evel): from (pol $a_{\alpha})$. Other: 3445 50 from (a_{α}) . 3486.09.4 2^- EF o W XREF: H(3503). Fit. (d,a)=4 from 7^+ : π =unnatural in (pol $a_{\alpha})$. 3557.41.8 (1^-,2^+,3^-,4^+) E W XREF: W(3508). JF: 1.20.3503. 3599.20.3 2^- EF o W XREF: W(3508). JF: 1.20.869 to 4^-, 1308.97 to 1^+. 3629.97.4 2^-, 3^- <69 fs EFG o W FF: C(3053) JF: 1.01.869 to 4^-, 1308.97 to 1^+. 3712.98.9 (2)^- EF 0 W N REF: F(3719). JF: 1.237.247 ya and 3633.887 to 3^-, 249.547 and 170.47.37 to 2^+. Additional information 12. 3712.98.9 (2)^- EF j o W FILE (L_0)=1 from 3/2^+; 1/2.397 to 3^+. 3712.98.9 (2)^- EF j o W FILE (L_0)=1 from 3/2^+; 1/2.397 to	3414.34 <i>3</i>	2+			EF		0	W	J^{π} : L(d,p)=0+2 from 3/2 ⁺ ; 3384.66 γ to 3 ⁻ .
3448 10 $(3,5)^+$ D j o W XEEF: D(243),, Effective (a,b),, Effective	3439.18 <i>3</i>	(2 ⁺)			Е	j	0		J^{π} : 1795.45 γ to 0 ⁺ ; J=2 ⁺ favored by $\gamma\gamma(\theta)$ and $\gamma(\text{circ pol})$ in (n, γ) .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3448 10	$(3.5)^+$			D	i	0	W	XREF: D(3445)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011010	(0,0)			-	5	•		F(level): from (pol d α) Other: 3445 50 from (α d)
348.609 4 2 EF 0 1 E(A) = 1 F(OR) = 1									I^{π} : I (α d)-4 from 0 ⁺ : π -unnatural in (nol d α)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3486.09 4	2-			EF		ο	W	J^{π} : L(d,p)=1 from $3/2^+$; π =unnatural, $J^{\pi} \neq 0^-$ in
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0517 15						~		(pol $\mathbf{d}, \boldsymbol{\alpha}$).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	351/15				_ н		0		XREF: H(3503).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3557.41 8	$(1, 2^+, 3, 4^+)$			E			W	XREF: W(3568).
3599.20 3 2 ⁻ EF o W J ⁷ : L(d,p)=1 from 3/2 ⁺ ; 1201.86y to 4 ⁻ , 1308.9y to 1 ⁺ . 3629.97 4 2 ⁻ ,3 ⁻ <69 fs									J^{π} : 3526.997 to 3^{-} and 981.057 to 2^{-} ; $J^{\pi}=1^{-},2^{+},3^{-},4^{+}$ preferred from π =(natural) in (pol
3599.20 3 2 ⁻ EF o w J ⁺ : L(d,p)=1 from 3/2 ⁺ ; J ^π =0 ⁻ ,1 ⁻ raled out by RUL for 1232.74y and 3629.94y to 4 ⁻ . Additional information 12. T _{1/2} : from (d,py). 3663.88 4 (1 ⁻ ,2,3,4 ⁺) EF 0 w J ^π : L(d,p)=1 from 3/2 ⁺ ; J ^π =0 ⁻ ,1 ⁻ raled out by RUL for 1232.74y and 3629.94y to 4 ⁻ . Additional information 12. T _{1/2} : from (d,py). 3663.88 4 (1 ⁻ ,2,3,4 ⁺) EF 0 W KREF: 0(3653)W(3682). J ^π : 1373.227y and 3633.88y to 3 ⁻ , 249.54y and 1704.73y to 2 ⁺ . Additional information 13. 3712.98 9 (2) ⁻ EF j W XREF: 0(3653)W(3682). J ^π : L(d,p)=1 from 3/2 ⁺ ; 1452.39y to 3 ⁺ , r=cunnatural in (pol d,a.). 3738.49 3 1 ⁺ dEF j W XREF: 0(3673)M(3682) to 0 ⁺ ; π=unnatural in (pol d,a.). 3768.4 3 (2) ⁻ dEF j W J ^π : L(d,p)=1 from 3/2 ⁺ ; π=unnatural in (pol d,a.). 3797.48 3 1 ⁺ EF o W J ^π : L(d,p)=1 from 3/2 ⁺ ; π=unnatural in (pol d,a.). 3821.45 4 2 ⁻ EF W J ^F : L(d,p)=1 from 3/2 ⁺ ; π=unnatural in (pol d,a.); 3840.27 3 (1,2 ⁺) EF H J o XREF: H(3870). J ^F : 1206.61y to 0 ⁺ . 3840.27 3 (1,2 ⁺) EF H J o </td <td></td> <td>a-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>d, α).</td>		a -							d, α).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3599.20 <i>3</i>	2-			EF		0	W	J^{n} : L(d,p)=1 from 3/2 ⁺ ; 1201.86 γ to 4 ⁻ , 1308.9 γ to 1 ⁺ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3629.97 4	$2^{-}, 3^{-}$	<69 fs		EFG		0	W	J^{π} : L(d,p)=1 from 3/2 ⁺ ; $J^{\pi}=0^{-},1^{-}$ ruled out by RUL
3663.88 4 $(1^-,2,3,4^+)$ EF0Additional information 12. $T_{1/2}$: from (d,py).3663.88 4 $(1^-,2,3,4^+)$ EF0WXREF: (0(3653)W(3682). J ⁷ : 1373.227 y and 3633.88 y to 3 ⁻ , 249.54 y and 1704.73 y to 2 ⁺ . Additional information 13.3712.98 9 $(2)^-$ EFjoWXREF: F(3719). J ⁷ : L(d,p)=1 from 3/2 ⁺ ; 1452.39 y to 3 ⁺ , $\pi=(unnatural) in (pol d, \alpha).$ 3738.49 31 ⁺ dEFjoWJF: 1478.01 y to 3 ⁺ , 2094.61 y to 0 ⁺ ; $\pi=unnatural$ in (pol d, α). L($\alpha,d)=4$ from 0 ⁺ is inconsistent.3768.4 3(2) ⁻ dEFoWJ ⁷ : L(d,p)=1 from 3/2 ⁺ ; J [#] =2 ⁻ preferred from $\pi=(unnatural) in (pol d, \alpha).$ 3797.48 31 ⁺ EFoWXREF: F(3791). J ⁷ : 2153.81 y to 0 ⁺ , 1536.84 y to 3 ⁺ ; L(d,p)=0,1 from 3/2 ⁺ ; $\pi=unnatural in (pol d, \alpha).$ 3840.27 3(1,2 ⁺)EFWYXREF: H(3870). J ⁷ : 2196.61 y to 0 ⁺ .3868.65 52 ⁻ EFGLoWJ ⁷ : 1206.1 y to 0 ⁺ .3872.33 20(7 ⁺)AJ ⁷ : 120UJ ⁷ : 1262.1 y to 1 ⁻ . 1578.97 y to 1 ⁺ .3878.81 4(1 ⁻ ,2 ⁻)dEFLoWJ ⁷ : 1262.1 y to 7, 3857.97 y to 3 ⁻ .3898.8dfoWJ ⁷ : 3895.7 y to 3, 1634.26y y to 1 ⁺ ; $\pi=(unnatural)$ 3924.07 7(2 ⁻ ,3 ⁺)dEFWJ ⁷ : 3895.7 y to 3, 354.26y y to 1 ⁺ ; $\pi=(unnatural)$									for 1232.74 γ and 3629.94 γ to 4 ⁻ .
$3663.88 4$ $(1^-,2,3,4^+)$ EF 0 \mathbb{W} $\mathbb{X}REF: O(3653)\mathbb{W}(3682).$ $J^{\pi}: 1373.227y and 3633.88y to 3^-, 249.54y and1704.73y to 2^+.Additional information 13.3712.98 9(2)^ \mathbb{E}F\mathbf{j}\mathbf{w}\mathbb{X}REF: F(3719).J^{\pi}: L(d,p)=1 from 3/2^+; 1452.39y to 3^+,\pi=(unnatural) in (pol d, \alpha).3738.49 31^+\mathbb{d}\mathbb{E}F\mathbf{j}\mathbf{w}J^{\pi}: 1478.01y to 3^+, 2094.61y to 0^+; \pi=unnaturalin (pol d, \alpha).3768.4 3(2)^ \mathbb{d}\mathbb{E}F\mathbf{v}\mathbb{W}J^{\pi}: 1478.01y to 3^+, 2094.61y to 0^+; \pi=unnaturalin (pol d, \alpha).3797.48 31^+\mathbb{E}F\mathbf{w}J^{\pi}: L(d,p)=1 from 3/2^+; J^{\pi}=2^- preferred from\pi=(unnatural) in (pol d, \alpha).3821.45 42^ \mathbb{E}F\mathbb{W}J^{\pi}: L(d,p)=1 from 3/2^+; \pi=unnatural in (pol d, \alpha).3840.27 3(1,2^+)\mathbb{E}F\mathbb{W}J^{\pi}: L(d,p)=1 from 3/2^+; \pi=unnatural in (pol d, \alpha);1424.229y and 3822.17y to 4^3872.33 20(7^+)\mathbb{A}\mathbb{F}\mathbb{W}J^{\pi}: 12(d,p)=1 from 3/2^+; \pi=unnatural in (pol d, \alpha);3878.81 4(1^-,2^-)\mathbb{E}F\mathbb{W}J^{\pi}: 12(d,p)=1 from 3/2^+; \pi=unnatural in (pol d, \alpha);3878.81 4(1^-,2^-)\mathbb{E}F\mathbb{W}J^{\pi}: 12(d,p)=1 from 3/2^+; \pi=unnatural in (pol d, \alpha);3868.3y to 4^-, 1765.24y to 1^-, 1578.97y to 1^+.J^{\pi}: 12(d,p)=1\mathbb{H}^+: 12(d,p)=1\mathbb{H}^+: 12(d,p)=1J^{\pi}: 12(d,p)=1\mathbb{H}^+: 12(d,p)=1\mathbb{H}^+: 12(d,p)=1J^{\pi}: 1$									Additional information 12.
3665.88 4 $(1, 2, 3, 4^{-})$ EF 0 W XREF: 0(3653)W(3682). J^{π} : 1373.227 y and 3633.88 y to 3 ⁻ , 249.54 y and 1704.73 y to 2 ⁺ . Additional information 13. 3712.98 9 (2) ⁻ EF j 0 W XREF: F(3719). J^{π} : L(d,p)=1 from 3/2 ⁺ ; 1452.39 y to 3 ⁺ , π =(unnatural) in (pol d, α). J ^{\pi} : L(d,p)=1 from 3/2 ⁺ ; 1452.39 y to 3 ⁺ , π =(unnatural) in (pol d, α). 3738.49 3 1 ⁺ dEF j 0 W J ^{\pi} : 1478.01 y to 3 ⁺ , 2094.61 y to 0 ⁺ ; π =unnatural in (pol d, α). 3768.4 3 (2) ⁻ dEF o W J ^{\pi} : L(d,p)=1 from 3/2 ⁺ ; J ^{\pi} =2 ⁻ preferred from π =(unnatural) in (pol d, α). 3797.48 3 1 ⁺ EF o W XREF: F(3791). 3797.48 3 1 ⁺ EF o W XREF: F(3791). 3821.45 4 2 ⁻ EF W J ^r : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α). 3840.27 3 (1,2 ⁺) EF H J o J ^π : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.65 5 2 ⁻ 3872.33 20 (7 ⁺) A J ^π : tentative assignment in (³⁰ Si,npy). 3888 8 dF o W <td>2662.00.4</td> <td>(1-004+)</td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td>$I_{1/2}$: from (d,pγ).</td>	2662.00.4	(1-004+)					~		$I_{1/2}$: from (d,p γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3663.88 4	$(1^-, 2, 3, 4^-)$			EF		0	W	XREF: O(3653)W(3682).
3712.98 9 $(2)^-$ EFjoMAdditional information 13.3738.49 31+dEFjoWXREF: F(3719).3738.49 31+dEFjoWJ ⁷ : L(d,p)=1 from 3/2+; 1452.39y to 3+, $\pi=$ unnatural) in (pol d, α).3768.4 3 $(2)^-$ dEFoWJ ⁷ : L(d,p)=1 from 3/2+; J ⁷ =2- preferred from $\pi=$ (unnatural) in (pol d, α)).3797.48 31+EFoWXREF: F(3791).3797.48 31+EFoWXREF: F(3791).3821.45 42-EFWJ ⁷ : L(d,p)=1 from 3/2+; $\pi=$ unnatural in (pol d, α).3840.27 3(1,2+)EFFW3868.65 52-EFGLo3872.33 20(7^+)AJ ⁷ : L(d,p)=1 from 3/2+; $\pi=$ unnatural in (pol d, α); $3868.3y to 4^-, 1765.24y to 1^-, 1578.97y to 1^+.3878.81 4(1^-,2^-)dEFLoW3898 8ddoW3924.07 7(2^-,3^+)dEFWJ7: 3895.7y to 3^-, 1634.26y to 1^+; \pi=(unnatural)$									J^{π} : 1373.227 γ and 3633.88 γ to 3 ⁻ , 249.54 γ and 1704.73 γ to 2 ⁺ .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									Additional information 13.
3738.49 3 1 ⁺ dEF j i μ^{π} : L(d,p)=1 from 3/2 ⁺ ; 1452.39 γ to 3 ⁺ , π =(unnatural) in (pol d, α). 3738.49 3 1 ⁺ dEF j o in (pol d, α). μ^{π} : L(d,p)=1 from 3/2 ⁺ ; 1452.39 γ to 3 ⁺ , π =(unnatural) in (pol d, α). 3768.4 3 (2) ⁻ dEF o W J ^{\pi} : L(d,p)=1 from 3/2 ⁺ ; J ^{\pi} =2 ⁻ preferred from π =(unnatural) in (pol d, α). 3797.48 3 1 ⁺ EF o W XREF: F(3791). J ^{\pi} : 2153.81 γ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d,p)=0,1 from 3/2 ⁺ ; π =unnatural in (pol d, α). 3821.45 4 2 ⁻ EF W J ^{\pi} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ . 3840.27 3 (1,2 ⁺) EF H J o XREF: H(3870). J ^{\pi} : 2196.61 γ to 0 ⁺ . 3868.65 5 2 ⁻ EFG L o J ^{\pi} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.83 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ . 3872.33 20 (7 ⁺) A J ^{\pi} : tentative assignment in (³⁰ Si,np γ). 3878.81 4 (1 ⁻ , 2 ⁻) dEF o W J ^{\pi} : 1262.1 γ to 0 ⁻ , 3857.9 γ to 3 ⁻ . 3898 8 dF o W E(level): from (d,p). 3924.07 7 (2 ⁻ , 3 ⁺) dEF L W J ^{\pi} : 3895.7	3712.98.9	$(2)^{-}$			EF	i	0	W	XREF: F(3719)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,120,00	(-)				5	•		I^{π} : L(d p)=1 from $3/2^+$: 1452 39 γ to 3 ⁺
3738.49 31+ (Initiating) in (por d, 0).3738.49 31+dEFjoWJ ^{π} : 1478.01 γ to 3 ⁺ , 2094.61 γ to 0 ⁺ ; π =unnatural in (pol d, α). $L(\alpha, d)=4$ from 0 ⁺ is inconsistent.3768.4 3(2) ⁻ dEFoWJ ^{π} : L(d, p)=1 from 3/2 ⁺ ; $J^{\pi}=2^-$ preferred from $\pi=(unnatural)$ in (pol d, α).3797.48 31 ⁺ EFoWXREF: F(3791). J ^{π} : 2153.81 γ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d, p)=0,1 from 3/2 ⁺ ; $\pi=unnatural$ in (pol d, α).3821.45 42 ⁻ EFWJ ^{π} : L(d, p)=1 from 3/2 ⁺ ; $\pi=unnatural$ in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ .3840.27 3(1,2 ⁺)EF H JoXREF: H(3870). J ^{π} : 2196.61 γ to 0 ⁺ .3868.65 52 ⁻ EFGLoWJ ^{π} : tentative assignment in (³⁰ Si, np γ).3872.33 20(7 ⁺)AJ ^{π} : tentative assignment in (³⁰ Si, np γ).J ^{π} : tentative assignment in (³⁰ Si, np γ).3898 8d FoWJ ^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; $\pi=(unnatural)$									π = (u,p) if from $3/2$, if 32.37 to 3° ,
3768.4 3 (2) ⁻ dEF o W J [*] : 1476.07 / 00 ⁺ s, 2.077 / 00 ⁺ s, 3.077 / 00 ⁺ s, 3.077 / 100 ⁺ s, 3.	3738 /0 3	1+			dee	4	•	W	π^{-} (unnatural) in (por u, a). π^{-} 1478 01 a to 3^{+} 2004 61 a to 0^{+} : π^{-} unnatural
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5750.495	1			uLI	J	0	vv	in (nol d a) $I(a, d) = 4$ from 0^+ is inconsistent
3708.4 3 (2)	2769 1 2	$(2)^{-}$			AFF		~	147	III (poi d, α). $L(\alpha, \alpha) = 4$ from 0 is inconsistent.
3797.48 31+EF0WXREF: F(3791). J ^{π} : 2153.81 γ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d,p)=0,1 from 3/2 ⁺ ; π =unnatural in (pol d, α).3821.45 42 ⁻ EFWJ ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ .3840.27 3(1,2 ⁺)EF H JOXREF: H(3870). J ^{π} : 2196.61 γ to 0 ⁺ .3868.65 52 ⁻ EFGLOWJ ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ .3872.33 20(7 ⁺)AJ ^{π} : tentative assignment in (³⁰ Si,np γ).3887.81 4(1 ⁻ ,2 ⁻)dEFLOW3924.07 7(2 ⁻ ,3 ⁺)dEFLWJ ^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)	5708.4 5	(2)			ULF		0	W	J^{*} . $L(\mathbf{u}, p) = 1$ from $J/2$, $J^{*} = 2$ preferred from
3797.48 3 1 EF 0 W AKEF: F(3/91). J^{π} : 2153.81 γ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d,p)=0,1 from 3/2 ⁺ ; π =unnatural in (pol d, α). J^{π} : 2153.81 γ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d,p)=0,1 from 3/2 ⁺ ; π =unnatural in (pol d, α). 3821.45 4 2 ⁻ EF W J^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ . 3840.27 3 (1,2 ⁺) EF H J o XREF: H(3870). 	2707 49 2	1+			EE			1.7	$\pi = (\text{unnatural}) \text{ in (pol } \mathbf{u}, \alpha)).$
J*: 2153.81 γ to 0°, 1556.84 γ to 3°; L(d,p)=0,1 from 3/2*; π =unnatural in (pol d, α).3821.45 42 ⁻ EFWJ ^{π} : L(d,p)=1 from 3/2*; π =unnatural in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ .3840.27 3(1,2 ⁺)EF H JoXREF: H(3870). J ^{π} : 2196.61 γ to 0 ⁺ .3868.65 52 ⁻ EFGLoWJ ^{π} : L(d,p)=1 from 3/2*; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ .3872.33 20(7 ⁺)AJ ^{π} : tentative assignment in (30 Si,np γ).3887.81 4(1 ⁻ ,2 ⁻)dEFLwJ ^{π} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻ .3898 8d FowE(level): from (d,p).3924.07 7(2 ⁻ ,3 ⁺)dEFLWJ ^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)	5/9/.48 5	1.			EF		0	W	AREF: $F(5/91)$.
$3821.45 \ 4$ 2^- EF W $J^{\pi}: L(d,p)=1 \text{ from } 3/2^+; \pi=\text{unnatural in (pol d,\alpha).3840.27 \ 3(1,2^+)EF H JOJ^{\pi}: L(d,p)=1 \text{ from } 3/2^+; \pi=\text{unnatural in (pol d,\alpha);1424.229\gamma and 3822.17\gamma to 4^-.3840.27 \ 3(1,2^+)EF H JOXREF: H(3870).J^{\pi}: 2196.61\gamma to 0^+.3868.65 \ 52^-EFG LOWJ^{\pi}: L(d,p)=1 \text{ from } 3/2^+; \pi=\text{unnatural in (pol d,\alpha);3868.3\gamma to 4^-, 1765.24\gamma to 1^-, 1578.97\gamma to 1^+.3872.33 \ 20(7^+)AJ^{\pi}: \text{ tentative assignment in (}^{30}\text{Si,npy}\text{)}.3877.81 \ 4(1^-,2^-)dEF LOWJ^{\pi}: 1262.1\gamma to 0^-, 3857.97\gamma to 3^-.dFOW3924.07 \ 7(2^-,3^+)dEF LWJ^{\pi}: 3895.7\gamma to 3^-, 1634.26\gamma to 1^+; \pi=(\text{unnatural})$									$J^{*}: 2153.81\gamma$ to 0 ⁺ , 1536.84 γ to 3 ⁺ ; L(d,p)=0,1
3821.45 4 2^- EF W J^{π} : L(d,p)=1 from $3/2^+$; π =unnatural in (pol d, α); 1424.229 γ and 3822.17 γ to 4 ⁻ . 3840.27 3 (1,2 ⁺) EF H J o XREF: H(3870). J^{\pi}: 2196.61 γ to 0 ⁺ . 3868.65 5 2 ⁻ EFG L o W J^{\pi}: L(d,p)=1 from $3/2^+$; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ . 3872.33 20 (7 ⁺) A J ^{\pi} : tentative assignment in (³⁰ Si,np γ). 3887.81 4 (1 ⁻ ,2 ⁻) dEF L o W J ^{\pi} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻ . 3898 8 d F o W J ^{\pi} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)									from $3/2^+$; π =unnatural in (pol d, α).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3821.45 4	2-			EF			W	J^{π} : L(d,p)=1 from $3/2^+$; π =unnatural in (pol d, α);
3840.27 3 $(1,2^+)$ EF H J o XREF: H(3870). 3868.65 5 2^- EFG L o J^{π} : 2196.61 γ to 0 ⁺ . 3872.33 20 (7^+) A J^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ . 3872.33 20 (7^+) A J^{π} : tentative assignment in (30 Si,np γ). 3887.81 4 (1 ⁻ ,2 ⁻) dEF L o w J^{π} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻ . 3898 8 d F o w J^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)									1424.229γ and 3822.17γ to 4 ⁻ .
J ^{π} : 2196.61 γ to 0 ⁺ .3868.65 52 ⁻ EFGLoWJ ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ .3872.33 20(7 ⁺)AJ ^{π} : tentative assignment in (30Si,np γ).3887.81 4(1 ⁻ ,2 ⁻)dEFLoW3898 8dFoWJ ^{π} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻ .3924.07 7(2 ⁻ ,3 ⁺)dEFLWJ ^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)	3840.27 <i>3</i>	$(1,2^{+})$			EF H	J	0		XREF: H(3870).
3868.65 5 2^- EFG L o W J^{π} : L(d,p)=1 from $3/2^+$; π =unnatural in (pol d, α); 3868.3 γ to 4^- , 1765.24 γ to 1^- , 1578.97 γ to 1^+ . 3872.33 20 (7^+) A J^{\pi}: tentative assignment in (30 Si,np γ). 3887.81 4 (1^-,2^-) dEF L o w J^{\pi}: 1262.1 γ to 0^- , 3857.97 γ to 3^- . 3898 8 d F o w E(level): from (d,p). 3924.07 7 (2^-,3^+) dEF L W J^{\pi}: 3895.7 γ to 3^- , 1634.26 γ to 1^+ ; π =(unnatural)									J^{π} : 2196.61 γ to 0 ⁺ .
3872.33 20 (7^+) A J^{π} : tentative assignment in $({}^{30}Si,np\gamma)$. 3887.81 4 $(1^-,2^-)$ dEF L o w J^{π} : 1262.1 γ to 0^- , 3857.9 γ to 3^- . 3898 8 d F o w E(level): from (d,p). 3924.07 7 $(2^-,3^+)$ dEF L W J^{π} : 3895.7 γ to 3^- , 1634.26 γ to 1^+ ; π =(unnatural)	3868.65 5	2-			EFG	L	0	W	J ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural in (pol d, α); 3868.3 γ to 4 ⁻ , 1765.24 γ to 1 ⁻ , 1578.97 γ to 1 ⁺ .
$3887.81 4$ $(1^-,2^-)$ dEF L o w J^{π} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻ . $3898 8$ d F o w E(level): from (d,p). $3924.07 7$ $(2^-,3^+)$ dEF L W J^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)	3872.33 20	(7^{+})		A					J^{π} : tentative assignment in (³⁰ Si.npv).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3887.81 4	$(1^{-},2^{-})$			dEF	L	0	W	J^{π} : 1262.1 γ to 0 ⁻ , 3857.97 γ to 3 ⁻
3924.07 7 $(2^-,3^+)$ dEF L W J^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)	3898 8	(- ,=)			d F	-	0	w	E(level): from (d.p).
	3924.07 7	$(2^{-},3^{+})$			dEF	L		W	J^{π} : 3895.7 γ to 3 ⁻ , 1634.26 γ to 1 ⁺ ; π =(unnatural)

⁴⁰K Levels (continued)

E(level) [†]	J ^{π‡}	$T_{1/2}^{\#}$		Х	REF		Comments
3996 10	ΙΙΝΝΔΤΗΡΔΙ				0	W	in (pol d, α). E(level): from (pol d α) 3995 15 from t ³ He)
5770 10	onnaonae				Ŭ		J^{π} : π =unnatural, $J^{\pi} \neq 0^{-}$ in (pol d, α).
4020.39 4	(2) ⁻			EF	0	W	XREF: W(4033).
							J [*] : L(d,p)=1 from 3/2 ⁺ ; J [*] =2 preferred from π =(unnatural) in (pol d α)
4080 5				F	ο	W	XREF: $W(4071)$.
4104 40 4	(1-00-)						E(level): from (d,p), 4071 10 from (pol d, α).
4104.49 4	$(1^-, 2, 3^-)$			Ef	0	W	J^{n} : 2001.24 γ to 1 ⁻ , 1813.94 γ to 3 ⁻ . $J^{n}=2^{-}$
							level at 4118 10 if it is the same level.
4110.79 <i>3</i>	2			Ef		W	J^{π} : 2467.31 γ to 0 ⁺ , 4110.39 γ to 4 ⁻ . J^{π} =2 ⁻
							preferred from π =unnatural in (pol d, α) for a level at 4118 10 if it is the same level
4149.04 4	$(2^{-},3^{+})$			Е		W	XREF: W(4154).
							J^{π} : 1751.76 γ and 4148.4 γ to 4 ⁻ , 3348.91 γ to 2 ⁻ ;
							primary 3650.34 γ from 1 ⁺ ,2 ⁺ ; π =(unnatural) in
4180.15 4	(3^{-})			Е	0	W	(poi d, α). I^{π} : 3286.4 γ to 5 ⁻ . 951.16 γ to 2 ⁻ . 2221.27 γ to 2 ⁺ .
4213.08 7	$(2^{-},3^{+})$			EF	0	W	J^{π} : 2143.37 γ to 3 ⁻ ; primary 3586.53 γ from 1 ⁺ ,2 ⁺ ;
4051 70 15	(1.2=)			_			π =unnatural in (pol d, α).
4251.70 15	(1,2)			E	0	W	J [*] : 1625.6/ γ to 0 . J [*] =1 ⁺ ,2 preferred from π =(unnatural) in (pol d α) for a level at 4255 10
							if it is the same level.
4253.70 4	$(1,2)^{-}$			EF	0	W	J^{π} : L(d,p)=1; 2149.93 γ to 1 ⁻ , 2183.70 γ and
							4223.66 γ to 3 ⁻ ; J^{π} =(1,2) ⁻ from γ (circ pol) in (n z) E-thermal J^{π} =2 ⁻ preferred from
							π =(unnatural) in (pol d, α) for a level at 4255 10
							if it is the same level.
4280.42 17	2-			E	0		XREF: $O(4277)$.
							J [*] : L(t, He)=1+3 from 0 ⁺ ; 4280.35 γ to 4 , 2233 0v and 3480 6v to 2 ⁻ 1704 70v to 2 ⁺
4313.94 11	2-			EF		W	XREF: F(4298)W(4310).
							J ^{π} : L(d,p)=1 from 3/2 ⁺ ; π =unnatural, $J^{\pi} \neq 0^{-}$ in
							(pol d, α). Additional information 14
4350.47 18	(2 ⁻)			EF	0	W	XREF: O(4335)W(4362).
							J^{π} : 2246.3 γ to 1 ⁻ , 4319.6 γ to 3 ⁻ ; π =unnatural in
4365 77 18	8+	0.36 ps. 14	AR				(pol d, α). $I^{\pi} \cdot 1486.7\gamma$ stretched E2 to 6 ⁺ 1822.9 γ to 7 ⁺
1505.77 10	0	0.00 p5 17					$T_{1/2}$: from (¹⁶ O,np γ). The uncertainty may be
							larger since the lifetime is comparable to the
1383 7 7	0+			тт	0	V	stopping time in the tantalum stopper (1991Ja11). $T-2$
4303.77	0			13	0	v	J^{π} : L(³ He,t)=L(p, ³ He)=0 from 0 ⁺ : $\gamma\gamma(\theta)$ in
							$(p,n\gamma).$
1205 00 2	(2)			FF U		17	T: from $(p,n\gamma)$.
4395.88 3	(2)			EF H		w	I^{π} : L(d,p)=1 from $3/2^+$: 657.39 γ to 1^+ : $J^{\pi}=2^-$
							preferred from π =(unnatural) in (pol d, α).
4419.37 7	$(2^{-},3,4^{+})$			E			J^{π} : 2022.32 γ to 4 ⁻ , 1843.33 γ to 2 ⁺ ; primary
4463 61 6	$(1^{-}234^{-})$			Ef	0	147	3380.3γ from 1°,2°. I ^{π} · 2416 06 γ and 3663 32 γ to 2 ⁻ 2393 84 γ to 3 ⁻
	(- ,=,=,,)				ž		$J^{\pi} = (1^{-}, 2^{-}, 3^{-})$ preferred from L(d,p)=1 from 3/2 ⁺
4472.00.0	(2= 2, 4=)			F (for a level at 4466 5 if it is the same level.
44/3.08 9	(2,3,4)			LI	0	W	J : 4472.80γ to 4 , 1079.44γ to 2 . $J^{*}=(2,3)$

⁴⁰K Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$			XRE	EF		Comments
								preferred from $L(d,p)=1$ from $3/2^+$ for a level at 4466
4508 15						0		5 II It is the same level.
4537.07 4	(1 ⁻ ,2,3)			Ef	L	0	W	J^{π} : 1961.11 γ and 2577.63 γ to 2 ⁺ , 3737.01 γ to 2 ⁻ , 4506.96 γ to 3 ⁻ . $J^{\pi}=2^{-}$ preferred from L(d,p)=1 from 3/2 ⁺ for a level at 4544 5 and $\pi=$ unatural for a level
4544.13 6	(0 ⁻ to 4 ⁻)			Ef		0	W	at 4555 10 in (poi d, α) if they are the same level. J^{π} : 1058.03 γ and 3743.2 γ to 2 ⁻ . J^{π} =2 ⁻ preferred from L(d,p)=1 from 3/2 ⁺ for a level at 4544 5 and π =unnatural for a level at 4535 10 in (pol d, α) if they are the same level
4589 5	(2 ⁻)			F			W	E(level): from (d,p), 4590 10 from (pol d, α). π . I (d p)=1: π =upnatural $I^{\pi} \neq 0^{-}$ in (pol d α)
4662.4 3	(2 ⁻ to 6 ⁻)			Ef			W	J^{π} : 4662.1 γ to 4 ⁻ . J^{π} =2 ⁻ preferred from L(d,p)=1 from $3/2^+$ for a level at 4662 5 and π =unnatural for a level at 4663 10 in (pol d, α).
4666.49 6	(2 ⁻ to 5 ⁻)			Ef			W	J ^{π} : 4667.0 γ to 4 ⁻ , 2375.85 γ to 3 ⁻ . J ^{π} =2 ⁻ preferred from L(d,p)=1 from 3/2 ⁺ for a level at 4662 5 and π =unnatural for a level at 4663 <i>10</i> in (pol d, α).
4697 10	UNNATURAL						W	J^{π} : π =unnatural in (pol d, α).
4744.14 3	(2^+)			E			W	J^{π} : 3100.42 γ to 0 ⁺ , 2483.8 γ to 3 ⁺ , 563.86 γ to (3 ⁻).
4765 5	(1)+			FH			W	E(level): from (d,p). Others: 4763 30 from (p,n), 4762 10 from (pol d, α). J ^{π} : L(d,p)=0 from 3/2 ⁺ ; J ^{π} = 1 ⁺ preferred from π =unnatural in (pol d, α).
4788.92 10	2-			EF		0	W	J^{π} : L(d,p)=1; 2162.16 γ to 0 ⁻ , 2528.44 γ to 3 ⁺ ; π =(unnatural) in (pol d, α).
4807.92 12	(0 to 3) ⁻			EF				J ^{π} : L(d,p)=1; 2007.41 γ to J ^{π} =1, 4008.1 γ to 2 ⁻ .
4812.01 25	(8 ⁺)		Α					J^{π} : tentative assignment in (³⁰ Si,np γ).
4827 10	UNNATURAL						W	J^{π} : π =unnatural in (pol d, α).
4851.40 <i>13</i>	$(2^{-},3,4^{+})$			E			W	J^{n} : 4851.16 γ to 4 ⁻ , 2892.19 γ to 2 ⁺ .
4872.56 7	(2,3)	0.7		EF			W	$J^{\pi}: L(a,p)=1; 48/2.4/\gamma \text{ to } 4$.
4875.57 20	9'	<0.7 ps	AB				W	$J^{*}: \gamma(\theta, \text{pol}) \text{ in } ({}^{16}\text{O}, \text{np}\gamma).$ $T_{1/2}: \text{ from } ({}^{16}\text{O}, \text{np}\gamma).$
4909 5	$(0 \text{ to } 3)^{-}$			F				$J^{\pi}: L(d,p)=1.$
4930 10	UNNATURAL			_			W	J^{n} : π =unnatural in (pol d, α).
4948 4	(2)			F			W	E(level): from (d,p), 4942 10 from (pol d, α). J^{π} : L(d,p)=1; $J^{\pi}=2^{-}$ preferred from $\pi=$ (unnatural) in (pol d, α).
4960.36 5	(2,3 ⁻)			E				J^{π} : 2857.15 γ to 1 ⁻ , 2173.67 γ to 3 ⁺ , 4929.3 γ and 2668.8 γ to 3 ⁻ .
4993.26 5	(2 ⁻)			EF			W	J^{π} : 2702.60 γ , 2922.91 γ and 4962.2 γ to 3 ⁻ , 1846.72 γ to 1 ⁽⁻⁾ : π =unnatural in (pol d. α).
5023.7 <i>3</i>	$(2^{-},3,4^{-})$			EF			W	J^{π} : 1255.29 γ to (2) ⁻ , 2627.7 γ to 4 ⁻ .
5063.37 7	(2 ⁻ ,3 ⁺)			E			W	J^{π} : 2644.0 γ to 2 ⁻ , 1953.74 γ to 1 ⁺ ,2 ⁺ , 5062.9 γ to 4 ⁻ . J^{π} =2 ⁻ ,3 ⁺ preferred from π =unnatural for a level at 5068 10 in (pol d, α) if it is the same level.
5080 5	(0 to 3) ⁻			F			W	E(level): from (d,p). J^{π} : L(d,p)=1. $J^{\pi}=2^{-}$ preferred from π =unnatural for a level at 5068 10 in (pol d, α) if it is the same level.
5111.9 7	(2,3) ⁻			EF			W	J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 5111.5 γ to 4 ⁻ . J ^{π} =2 ⁻ preferred from π =unnatural for a possible 5112+5132 doublet at 5111 10 in (pol d, α).
5136 5	(0 to 3) ⁻			Fh			W	J^{π} : L(d,p)=1. $J^{\pi}=2^{-}$ preferred from π =unnatural for a possible 5112+5132 doublet at 5111 <i>10</i> in (pol d, α).

⁴⁰K Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #			XRE	EF		Comments
5158 5	(0 to 3) ⁻			F	h		W	XREF: $W(5169)$. $I^{\pi}: I_{(d, p)=1}$
5189.89 <i>5</i>	(2 ⁻)			Е				J^{π} : 5188.87 to 4 ⁻ , 1393.167 to 1 ⁺ , 2459.487 to $1^{(-)}$
5214.23 20	2-			EF			W	J^{π} : L(,p)=1 from $3/2^+$; π =unnatural in (pol d, α); 3144 30 γ to 3^-
5247.1 <i>6</i>	(0^{+})			E				VDEE: E(2)
5552.91 24	(9)		л					J^{π} : tentative assignment in (³⁰ Si,np γ).
5488.65 <i>17</i> 5681 <i>32</i> 5870 <i>20</i>	(2 ⁻ ,3,4 ⁻)			E	Н			J^{n} : 5488.5 γ to 4 ⁻ , 2680.4 γ to (1,2) ⁻ .
5891.90 22	(9 ⁻)		A	_	5			J^{π} : tentative assignment in (³⁰ Si,np γ).
6098.22 7 6118 <i>30</i>	(1 ⁻ ,2,3,4 ⁻)			E	н			J^{n} : 1/02.35 γ to (2) ⁻ , 6067.6 γ to 3 ⁻ .
6227.01 25	(8,10) ⁻	<1.4 ps	В					J ^{π} : from $\gamma(\theta, \text{pol})$ in (¹⁶ O, np γ). T _{1/2} : from (¹⁶ O, np γ).
6790 <i>30</i> ≈7000				1	Н	Р		
7033.0 4	(9 ⁻)		A	,	и			J^{π} : tentative assignment in (³⁰ Si,np γ).
7472.2 3	(9 ⁻ ,11 ⁻)		AB	1	n			J ^{π} : from $\gamma(\theta)$ in (¹⁶ O,np γ).
7748.0 <i>4</i> 7795 <i>33</i>	(9 ⁻ ,10 ⁻)		A	1	н			J^{π} : tentative assignment in (³⁰ Si,np γ).
7799	(0, (-2))=			E				
7800.70.6	(0 to 3)						X	
7802.82 0	$(0 \ 10 \ 3)$	72 aV 8					A V	
7808.77 0	1	13 EV 0					X	
7811.93 6	3-	1.2 eV 2					x	
7813.56 6	$(2)^{-}$	112 0 1 2					x	
7815.18 6	2-	1.64 eV 24					X	
7815.91 6	(3 ⁻)						Х	
7823.96 7							Х	
7824.53 7	2+	95 eV 3					X	
7827.26 7	_						Х	
7830.98 7	3-	3 eV					X	
/832.10 /	(2^{-})	13 eV 1					X	
7836.23.8	(2^{-})						N V	
7841 26 7	(2^{+})	0.54 keV 3					X	
7843.62.8	2	0.51 Ke V 5					x	
7844.45 8	2-	42 eV 2					X	
7850.42 8	$(2)^{-}$						X	
7852.62 8							Х	
7852.79 8 7854.04 8	2^{-}	17 eV 4					X X	
7855.97 8	1+	1.1 keV 1					X	
7857.99 8	1-	83 eV 13					X	
7866.25 9	1	1.94 keV 24					X	
/866.80 9							X	
7878.23 10							л Х	
. 0, 0.23 10								

⁴⁰K Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
7878.74 10				X	
7882.37 10				Х	
7885.12 11	1-	0.47 keV 5		Х	
7890.06 11				Х	
7890.36 11				Х	
7893.94 12				Х	
7894.47 12				Х	
7896.32 12	2-	0.11 keV 3		Х	
7899.05 21	2-	36 eV 11		Х	
7900.50 21				Х	
7901.41 <i>21</i>				Х	
7903.13 21				Х	
7905.46 21				Х	
7905.58 21	1+	2.0 keV 4		Х	
7906.44 21				Х	
7906.81 <i>21</i>				Х	
7911.78 25				Х	
7914.07 25				Х	
7915.41 25				Х	
7916.7 <i>3</i>				Х	
7919.3 <i>3</i>	$(2)^{-}$			Х	
7922.6 <i>3</i>	(2)			Х	
7923.5 <i>3</i>				Х	
7924.3 <i>3</i>				Х	
7925.7 <i>3</i>				Х	
7931.5 <i>3</i>				Х	
7932.2 <i>3</i>				Х	
7932.8 <i>3</i>				Х	
7940.1 <i>3</i>	2-	0.17 keV 4		Х	
7941.0 <i>3</i>				Х	
7943.1 <i>3</i>				Х	
7944.0 <i>3</i>				Х	
7947.8 <i>4</i>				Х	
7949.6 4	(3 ⁻)			Х	
7952 32			Н		
7957.8 4				Х	
7972.7 4	1	1.12 keV 15		Х	
7983.1 5				Х	
7987.8 <i>5</i>	1+	1.0 keV 2		Х	
7994.1 6	$(9^{-} \text{ to } 12^{-})$		Α		J^{π} : tentative assignment in (³⁰ Si.np γ).
≈11000				PQ	
12.0×10^3 3				õ	
				*	

[†] From a least-squares fit to γ -ray energies when available. Doubly or multiply placed γ rays were not used in the least-squares procedure. Uncertainties of some γ rays were increased by a factor 2 or 4 in the fitting procedure in order to get an acceptable fit (reduced $\chi^2 < 3$). Other level-energy values are either from individual reactions or weighted averages when quoted precision is comparable. See additional levels in (n, γ) defined on the basis of two-quantum cascades (2002Va28). These levels are not listed here due to insufficient information about their decay modes and spin-parity assignments. [‡] When L-transfer arguments are used, the target spin-parity is $J^{\pi}=3/2^+$ for ${}^{39}K(d,p)$, ${}^{41}K(p,d)$ and ${}^{41}K(d,t)$; $J^{\pi}=7/2^-$ for

[‡] When L-transfer arguments are used, the target spin-parity is $J^{\pi}=3/2^+$ for ³⁹K(d,p), ⁴¹K(p,d) and ⁴¹K(d,t); $J^{\pi}=7/2^-$ for ⁴¹Ca(d,³He); $J^{\pi}=0^+$ for ⁴²Ca(p,³He), ⁴⁰Ar(³He,t) and ³⁸Ar(α ,d). Assignments in (n, γ),(n,n):resonances (for levels above 7800) are from fits to experimental cross sections. When assigning J^{π} to a level based on γ transitions from this level to a level of known J^{π} , evaluator consider transitions to be E1,M1 or E2.

[#] Lifetimes are available for 27 levels from $(\alpha,n\gamma)$; 22 levels from $(p,n\gamma)$; 17 levels from $(d,p\gamma)$; and 5 levels from $(HI,xn\gamma)$.

⁴⁰K Levels (continued)

Weighted averages from different reactions. For values from $(d,p\gamma)$ and $(p,n\gamma)$, 15% systematic uncertainty is added in quadrature. For values from other datasets, systematic uncertainty is already included. Level widths given are the sum of the neutron widths and gamma widths extracted from fits to resonance data of (n,γ) , unless otherwise noted.

					Adopted	Levels, Gamma	s (contin	ued)
						$\gamma(^{40}\text{K})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f .	\int_{f}^{π} Mult. [#]	$\delta^{\#}$	α [@]	Comments
29.8299	3-	29.8299 5	100	0 4	- M1		0.298	B(M1)(W.u.)=0.150 3
								Additional information 15.
								Mult.: $\delta(E2/M1) \le 0.07$ from $\gamma\gamma(\theta)$ in (n,γ) E=thermal, but PULL favors pure M1
800.1431	2-	770.3053 18	100.9	29.8299	- M1(+E2)	+0.04 + 3 - 6		B(M1)(W.u.)=0.18 + 5-3
	_			_,	()			Additional information 16.
								Mult.: D(+Q) from $\gamma\gamma(\theta)$ in (n, γ) E=thermal; polarity from no
								level-parity change determined from other experimental
								δ : from $\gamma\gamma(\theta)$ in (n γ) E=thermal Other: $\delta(\Omega/D)=0.00 l$ in
								$(p,n\gamma)$.
		800.3 <i>3</i>	0.147 16	0 4	- [E2]			B(E2)(W.u.) = 1.2 + 7 - 4
891.394	5-	862.2 ^{&} 3	<1.3	29.8299 3	- [E2]			B(E2)(W.u.)<3
		891.372 21	100 10	0 4	- M1+E2	+0.085 15		B(M1)(W.u.)=0.037 + 11-7; B(E2)(W.u.)=1.1 + 9-5
								Mult δ : from $\gamma(\theta \text{ nol})$ in ${}^{26}\text{Mg}{}^{16}\text{O nny})$
1643.638	0^{+}	843.478 16	24.4 24	800.1431 2	[M2]			B(M2)(W.u.)=0.0036 + 6-5
								I _{γ} : weighted average of 25 6 from (α ,n γ), 27.5 28 from (n, γ)
		1612 94 4	100.2	20,8200	- [122]			E=thermal, 22.0 24 from (p,n γ).
		1013.84 4	100 3	29.8299 3	[E3]			B(E3)(W.u.)=1.07 + 8 - 7 L.: from (p py)
1959.071	2^{+}	1158.901 20	100 3	800.1431 2	E ⁻ E1(+M2)	0.00 5		B(E1)(W.u.)=0.00058 + 13-9
								Additional information 18.
								I_{γ} : from (p,n γ).
		1929 34 10	21 5 24	29.8299	= F1+M2	$\pm 0.11.3$		$P(\theta) = P(\theta) = $
		1)2).34 10	21.5 24	27.0277	LITIVIZ	10.11 5		Additional information 19.
								I_{γ} : weighted average of 22.0 24 from (α ,n γ), 23 4 from (n, γ)
								E=thermal, 20.5 24 from (p,n γ). Other: 36 18 from (μ -, $\nu\gamma$)
								and 14.3 IS from $(n,p\gamma)$. Mult : D+O from $\gamma(\theta)$ in $(n,n\gamma)$ polarity from level-parity
								change determined from L-transfer data.
2047.338	2-	1247.173 24	100 3	800.1431 2	2- M1+E2	+0.09 4		B(M1)(W.u.)=0.0142 +36-25; B(E2)(W.u.)=0.23 +37-18
								Additional information 20.
								I_{γ} : Irom (p,n γ). Mult : polarity from γ (circ pol) in (p γ) E=thermal
								δ : weighted average of +0.10 4 from (n,y) E=thermal and +0.05
								8 from (p,nγ).
		2017.53 4	74.5 25	29.8299 3	- M1+E2	+0.07 4		B(M1)(W.u.)=0.0025 + 7-5; B(E2)(W.u.)=0.010 + 20-8
								I_{α} : weighted average of 88 13 from (α .nv), 67 7 from (d.nv)
								(\mathbf{u},\mathbf{p}) , (\mathbf{u},\mathbf{p}) ,

=

From ENSDF

 ${}^{40}_{19}\mathrm{K}_{21}\text{--}11$

	Adopted Levels, Gammas (continued)												
							$\gamma(^{40}\mathrm{K})$	(continued)					
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ #	Comments					
2047.338	2-	2047.28 4	73.6 25	0	4-	E2		75.0 25 from $(p,n\gamma)$, and 74 11 from $(n,p\gamma)$. Other: 83 40 from $(\mu,\gamma\gamma)$. Mult., δ : from γ (circ pol) in (n,γ) E=thermal. B(E2)(W.u.)=1.8 +5-3 Additional information 22. I _{γ} : weighted average of 62 13 from $(\alpha,n\gamma)$, 71 8 from (n,γ) E=thermal, 65 7					
2069.802	3-	1178.38 4	10 2	891.394	5-	E2		from $(d,p\gamma)$, 75.0 25 from $(p,n\gamma)$, 74 29 from $(\mu^-,\nu\gamma)$, and 80 11 from $(n,p\gamma)$. Mult.: from γ (circ pol) in (n,γ) E=thermal. B(E2)(W.u.)=3.5 +27-15 I _{γ} : unweighted average of 6.4 21 from $(\alpha,n\gamma)$, 13.3 15 from (n,γ) E=thermal, 13 4 from $(d,p\gamma)$, and 6 2 from $(p,n\gamma)$.					
		1269.56 5	14 2	800.1431	2-	M1+E2	-0.20 10	Mult.: Q from $\gamma(\theta)$ in (p,n γ); M2 is ruled out by T _{1/2} . Additional information 23. B(M1)(W.u.)=0.00164 +5-8; B(E2)(W.u.)=0.13 +15-10 Additional information 24. L: weighted average of 10.6 21 from ³⁷ Cl(α px) 17.4 19 from (p γ)					
		2039.94 <i>4</i>	100 6	29.8299	3-	M1+E2	+0.26 10	E=thermal, 13 4 from (d,p γ), 12 4 from (p,n γ), and 25 6 from (n,p γ). Mult., δ : D+Q from $\gamma(\theta)$ in (p,n γ), polarity from no level-parity change determined from L-transfer data. B(M1)(W.u.)=0.00274 +12-15; B(E2)(W.u.)=0.14 +12-9 Additional information 25.					
		2070.08 15	82 7	0	4-	M1(+E2)	-0.07 5	I _γ : from (α,nγ) and (p,nγ). Mult.,δ: mixing ratio is weighted average of +0.2 2 from γ(circ pol) in (n,γ) E=thermal and +0.27 10 from γ(θ) in (p,nγ). B(M1)(W.u.)=0.002287 +11-22 Additional information 26. I _γ : weighted average of 96 6 from (α,nγ), 74 8 from (n,γ) E=thermal, 59 9 from (d m) 82 10 from (n m) and 77 29 from (u = yn)					
2103.68	1-	460 ^{<i>a</i>}	<4	1643.638	0+			Mult., δ : mixing ratio is from $\gamma(\theta)$ in (p,n γ), +0.01 <i>10</i> from $\gamma(\text{circ pol})$ in (n, γ) E=thermal. E _{γ} ,I _{γ} : from (d,p γ). In (n, γ) E=thermal, a 460.092 γ was doubly placed from 2104 and 2397 levels by 1984Vo01 and later resolved by 2013Fi01 to be from 2397 level.					
		1303.53 7	40 3	800.1431	2-	M1+E2	+0.30 6	B(M1)(W.u.)=0.00559 +18-20; B(E2)(W.u.)=0.9 4 Additional information 27. Mult., δ : D+Q from $\gamma(\theta)$ in (p,n γ) and $\gamma\gamma(\theta)$ in (n, γ) E=thermal, polarity from no level-parity change determined from L-transfer data.					
		2073.74 10	100 3	29.8299	3-	E2		from (d,py), 42.9 29 from (p,py), and 39 11 from (μ -, $\nu\gamma$). B(E2)(W.u.)=2.8 +9-6 Additional information 28.					

	Adopted Levels, Gammas (continued)												
							γ (⁴⁰ K) (c	ontinued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	Comments					
2260.48	3+	2230.54 5	100 3	29.8299	3-	E1(+M2)	+0.01 9	I _γ : from (p,nγ). Mult.: Q from γ(θ) in (p,nγ); M2 is ruled out by T _{1/2} . B(E1)(W.u.)=0.00063 +24-14 I _γ : from (p,nγ).					
		2260.11 10	27 6	0	4-	E1(+M2)	-0.05 6	δ: from γ(θ) in (p,nγ). B(E1)(W.u.)=0.00016 6 I _γ : unweighted average of 18 4 from (α,nγ), 38 4 from (n,γ) E=thermal, and 23.5 25 from (p,nγ).					
2289.868	1+	185.97 <i>10</i> 330.798 <i>7</i>	5.6 9 14.1 22	2103.68 1959.071	$1^{-}_{2^{+}}$			Mult., δ : from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(p,n\gamma)$. E_{γ} : also placed from 3414 and 3924 levels in (n,γ) E=thermal. I_{γ} : weighted average of 14 <i>3</i> from $(\alpha,n\gamma)$, 15.7 <i>14</i> from (n,γ) E=thermal, and 7 <i>3</i> from $(p,n\gamma)$.					
		646.223 5	100 3	1643.638	0+	M1		B(M1)(W.u.)=0.51 +13-9 Additional information 29. I_{γ} : from (p,n γ). Mult.: D from $\gamma(\theta)$ in (p,n γ), polarity from no level-parity change determined					
		1489.77 5	58 5	800.1431	2-	E1(+M2)	+0.14	from L-transfer data. B(E1)(W.u.)=0.00065 +27-17 Additional information 30. I _{γ} : weighted average of 56 5 from (α , $n\gamma$), 58 6 from (n , γ) E=thermal, 60 5 from (p , $n\gamma$), and 30 22 from (μ -, $\nu\gamma$). δ : from $\gamma(\theta)$ in (p , $n\gamma$).					
2290.551	3-	1399.03 [‡] 4	19.4 <i>18</i>	891.394	5-	[E2]		B(E2)(W.u.)=14 +6-4 Additional information 31. I _{γ} : weighted average of 23 4 from (α ,n γ), 18.9 <i>18</i> from (n, γ) E=thermal, and					
		2290.58 7	100 2	0	4-	M1+E2	-0.8 +3-5	19.0 24 from Ar(p,nγ). B(M1)(W.u.)=0.0061 +45-21; B(E2)(W.u.)=2.3 +15-19 I _γ : from (p,nγ). Mult.: polarity from γ (pol) in (α ,nγ).					
2397.190	4-	106.1 3	4.3 3	2290.551	$3^{-}_{2^{-}}$								
		521.25 8 2367.17 5	100 3	2009.802	3 3-	M1+E2	+0.25 4	B(M1)(W.u.)=0.029 +24-10; B(E2)(W.u.)=1.0 +14-5 Additional information 32. I_{γ} : from (p,n γ). Mult., δ : D+Q from $\gamma(\theta)$ in (p,n γ), polarity from no level-parity change datamined from other experimental suidance					
		2397.12 6	41 3	0	4-	M1+E2	-0.32 12	 B(M1)(W.u.)=0.0109 +7-9; B(E2)(W.u.)=0.6 +5-4 Additional information 33. I_γ: weighted average of 43 6 from (α,nγ), 39 4 from (n,γ) E=thermal, and 40.8 28 from (p,nγ). Mult.,δ: D+Q from γ(θ) in (p,nγ), polarity from no level-parity change determined from other experimental evidence. 					

$\gamma(^{40}K)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments
2419.160	2-	349.33 <i>4</i> 460.092 <i>14</i> 1619.00 <i>4</i>	0.85 <i>11</i> 2.19 <i>24</i> 100 <i>3</i>	2069.802 1959.071 800.1431	3 ⁻ 2 ⁺ 2 ⁻	M1+E2	+0.24 6	B(M1)(W.u.)=0.0059 + 18-12; B(E2)(W.u.)=0.41 + 38-22 Additional information 34.
		2389.18 5	20.1 <i>21</i>	29.8299	3-	M1+E2	-0.8 5	 Mult.,δ: D+Q from γγ(θ) in (n,γ) E=thermal, polarity from no level- parity change determined from L-transfer data. B(M1)(W.u.)=0.00024 +12-10; B(E2)(W.u.)=0.08 +6-7 Additional information 35. I_γ: weighted average of 19.0 25 from (α,nγ), 21.6 21 from (n,γ) E=thermal,
		2418.69 <i>15</i>	8.8 10	0	4-	E2		 19.0 25 from Ar(p,nγ). Mult.,δ: D+Q from γ(θ) in (p,nγ), polarity from no level-parity change determined from other experimental evidence. B(E2)(W.u.)=0.10 +5-4 Additional information 36. I_γ: weighted average of 7.6 13 from (α,nγ), 10.2 10 from (n,γ) E=thermal,
2542.79	7+	1651.31 <i>12</i>	100 2	891.394	5-	M2(+E3)	-0.02 3	and 7.6 <i>13</i> from (p,n γ). Mult.: $\delta(O/Q) = +0.17$ 28 from $\gamma(\theta)$ in (p,n γ); M2 ruled out by RUL. B(M2)(W.u.)=0.176 +14-12 E $_{\gamma}$: weighted average of 1651.34 24 from (³⁰ Si,np γ), 1651.29 12 from ²⁶ Mg(¹⁶ O,np γ), and 1651.5 5 from (α ,n γ).
		2542.8 <i>3</i>	12.7 4	0	4-	E3(+M4)	+0.10 7	I _γ ,Mult.,δ: from ²⁶ Mg(¹⁶ O,npγ), with Mult. and δ from $\gamma(\theta)$ and $\gamma(\text{pol})$. Other: δ =0.00 3 from (α ,n γ). B(E3)(W.u.)=1.90 +26-23 E _γ : weighted average of 2543.2 4 from (³⁰ Si,np γ), 2542.6 3 from (¹⁶ O,np γ), and 2542.4 10 from (α ,n γ).
								I _y : weighted average of 12.6 4 from (¹⁶ O,np γ), 13.6 23 from (α ,n γ), and 13.6 23 from (p,n γ). Other: 7.4 8 from (³⁰ Si,np γ). Mult., δ : from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (¹⁶ O,np γ). B(M4)(W.u.)=3×10 ⁴ +7-3 is too large; it is expected to be <30 from RUL and thus $\delta < 0.002$
2558.1 2575.93	2+	2558 315.52 8	100 2.2 3	0 2260.48 2047 238	4 ⁻ 3 ⁺ 2 ⁻			E _{γ} : from (n,p γ).
2626.00	0-	2545.85 <i>10</i> 522.319 <i>7</i>	100 100 <i>3</i>	29.8299 2103.68	$\frac{2}{3^{-}}$ 1 ⁻	E1(+M2) M1		Additional information 37. B(M1)(W.u.)= $0.50 + 12 - 8$ Additional information 38.
		1825.77 5	44 3	800.1431	2-	E2		I _y : from (p,ny). B(E2)(W.u.)= $4.8 + 19 - 12$ Additional information 39.

						Adopt	ed Levels, Gamm	as (continued)
							$\gamma(^{40}\text{K})$ (contin	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	δ#	Comments
								I_{γ} : weighted average of 43 4 from (α ,n γ), 42 5 from (n, γ) E=thermal, 43 7 from (d,p γ), 44.9 29 from (p,n γ), and 37 14 from (μ -, $\nu\gamma$).
2730.357	1	311.13 4	12.0 5	2419.160	2^{-}			
		626.1 ^{&} 3	<0.9	2103.68	1-			
		1086.707 19	100 4	1643.638	0^{+}	D		Additional information 40. Mult., I_{γ} : from (p,n γ).
		1930.2 <i>3</i>	64	800.1431	2^{-}			I_{γ} : from $(\alpha, n\gamma)$ and $(p, n\gamma)$.
2746.91	3-	789 1	6.2 16	1959.071	2^{+}			E_{γ}, I_{γ} : from ($\alpha, n\gamma$).
		1946.43 17	8.0 12	800.1431	2-		0.10.14	
		2716.95 11	100 5	29.8299	3-	M1+E2	-0.19 14	I_{γ} : from (p,nγ). Mult.,δ: from $\gamma(\theta)$ in (p,nγ), polarity from no level-parity change determined from other experimental evidence. Other: $\delta = -3.4 + 13 - 29$ in (p,nγ)
		2747.00 18	51 5	0	4-	M1+E2	-0.18 +11-18	Additional information 41.
								I _{γ} : weighted average of 50 5 from (α ,n γ), 52 6 from (n, γ) E=thermal, and 52 5 from (p,n γ). Mult δ : from $\gamma(\theta)$ in (p,n γ) polarity from no level-parity change
								determined from other experimental evidence.
2756.62	2^{+}	337.75 12	2.0 3	2419.160	2^{-}			, A
		1113.3 3	1.6 3	1643.638	0^+	[E2]		B(E2)(W.u.)>20
		1956.58 [‡] 5	100 3	800.1431	2^{-}	E1(+M2)	+0.19 +19-26	B(E1)(W.u.)>0.0021?
								Additional information 42.
								l_{γ} : from (p,n γ).
								Mult., o: D+Q from $\gamma(\theta)$ in (p,n γ), polarity implied by level-parity change determined by 1113 3 γ to 0 ⁺ and RUL. Other: $\delta = -2.1 \pm 13 - 7$ in (p ng)
		2726.62.7	52.3	29.8299	3-	E1(+M2)	0.00 12	B(E1)(Wn) > 0.00045?
				_,,				Additional information 43.
								I _{γ} : from (p,n γ). Others: 86 5 from (n, γ) E=thermal, 52 5 from (α ,n γ).
								Mult., δ : D+Q from $\gamma(\theta)$ in (p,n γ), polarity implied by level-parity change
0706 645	2+	106.06.1	04.3	2200 551	2-			determined by 1113.3 γ to 0 ⁺ and RUL. Other: -4.7 +20-144 in (p,n γ).
2786.645	5'	496.06 4 827 552 15	2.4 3	2290.551 1050.071	3 2+	M1 J E2	-0.09.7	$B(M1)(W_{H}) > 0.17$; $B(F2)(W_{H}) > 0.33$
		021.332 13	23 3	1757.0/1	2	WIITE2	-0.07 /	Additional information 44.
								Mult., δ : D+Q from $\gamma(\theta)$ in (p,n γ), polarity is implied by level-parity abave determined from $\alpha(\theta, n\alpha)$ in (a, na)
		2756 81 7	100 4	20 8200	3-	$F1(\pm M2)$	$-0.09 \pm 22 \pm 5$	change determined from $\gamma(\theta, \text{poi})$ in $(\alpha, n\gamma)$. B(E1)(W n)>0.00050?
		2730.017	100 7	29.0299	5	L1(+1 v 12)	0.09 ±22=3	Additional information 45.
								I_{γ} : from $(\alpha, n\gamma)$.
								Mult., δ : from $\gamma(\theta, \text{pol})$ in $(\alpha, n\gamma)$.
		2787.0 6	73	0	4-			

$\gamma(^{40}K)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
2787.32	34-	496.8 5	98 20	2290.551	3-			E_{γ} ; from $(\alpha, \eta \gamma)$.
	- ,.	1896.3 5	46 20	891.394	5-			E_{γ} : from $(\alpha, n\gamma)$.
		2787.10 25	100 20	0	4-	M1+E2		E_{γ} : from $(\alpha, n\gamma)$.
								Mult.: D+Q from $\gamma(\theta)$ in (p,n γ), polarity from no level-parity change
								determined from other experimental evidence.
2807.88	$(1,2)^{-}$	760.6 4	4.8 16	2047.338	2-			
		848.7 <i>3</i>	4.2 8	1959.071	2^{+}			
		2007.71 [‡] 4	100 12	800.1431	2^{-}			
2878.99	6+	336.18 6	100 <i>3</i>	2542.79	7+	M1(+E2)	+0.01 2	B(M1)(W.u.)=1.4 + 10-4
								E_{γ} : weighted average of 336.25 20 from (³⁰ Si,np γ), 336.18 16 from
								$(^{16}\text{O.np}\gamma)$, and 336.4 4 from $(\alpha.n\gamma)$.
								I_{γ} : from (¹⁶ O.np γ).
								Mult. δ : from $\gamma(\theta, \text{pol})$ in (¹⁶ O, np γ).
		1988 0 4	53 7	891 394	5-	$E_1(+M_2)$	-0.05.4	$B(E1)(W_{II}) = 9.77 \times 10^{-5} + 4 - 7$ $B(M2)(W_{II}) = 0.3 + 7 - 3$
		1900.0 7	557	071.371	5	L1(1112)	0.02 /	E : weighted average of 1988 07 35 from $({}^{30}Si nm)$ 1987 8 6 from
								$(^{16}\Omega nnu)$ and 1987 8 7 from (a nu)
								(30 Si nm) 51.7 from $(160 nm)$ and 61
								γ . weighted average of 40.8 from (Si, ipy), 51.7 from (O, ipy), and 01.
								Mult δ_{i} from $\alpha(0, nol)$ in $\binom{16}{9}$ nma). Others: $\delta_{-1} = 0.06 \pm 4.5$ from $\alpha(0, nol)$.
								in $(\alpha, n\alpha) = 0.09.9$ from $\theta(\theta)$ in $(n, n\alpha)$
2950.9		2950.8.6	100	0	Δ^{-}			F_{α} : from (α ny)
2985.84	$(2^{-},3^{+})$	695.31.8	8.9.13	2290.551	3-			Ly. from (u, ny) .
2705.01	(2,5)	1027.09.24	7.7 17	1959.071	2^{+}			
		2185.70 20	100 22	800.1431	2-			Additional information 46.
		2955.94 16	88 22	29.8299	3-			Additional information 47.
3027.976	$(2^{-},3^{+})$	737.45 3	37 4	2290.551	3-			Additional information 48.
								I_{γ} : weighted average of 43 8 from (α ,n γ) and 36 4 from (n, γ) E=thermal.
		958.35 9	6.5 8	2069.802	3-			
		1068.87 <i>3</i>	100 9	1959.071	2^{+}			Additional information 49.
								I_{γ} : from (α ,n γ).
		3027.7 <i>3</i>	37 5	0	4-			Additional information 50.
					_			I _{γ} : weighted average of 43 8 from (α ,n γ) and 35 5 from (n, γ) E=thermal.
3100.1	$(4,5)^+$	2208.7 7	82 18	891.394	5-	[E1]		B(E1)(W.u.)=0.00035 + 27 - 15
		2100	100.10	0	4-			E_{γ}, I_{γ} : from $(\alpha, n\gamma)$.
		3100	100 18	0	4	[EI]		B(E1)(W.u.)=0.00015 + 11-6
								E_{γ} : from level-energy difference, reported in $(\alpha, n\gamma)$.
			~~ 8 7					1_{γ} . HOIII (α , $\Pi\gamma$).
3109.56	1+,2+	534.3°° 3	<3.5°	2575.93	2+			
		1062.20 8	20.2	2047.338	2-			
		1150.58 18	88 15	1959.071	21			

16

From ENSDF

Adopted Levels, Gammas (continued) $\gamma(^{40}\text{K})$ (continued) E_{γ}^{\dagger} I_{γ}^{\dagger} $\delta^{\#}$ Mult.# J_i^{π} \mathbf{E}_{f} J_{f}^{π} Comments E_i (level) 1466.11[‡] 3 $1^+, 2^+$ 0^+ 100 12 3109.56 1643.638 3128.41 $(2^{-},3^{+})$ 320.9 6 1.5 8 2807.88 $(1,2)^{-}$ 371.792 10 28 3 2756.62 2^{+} 838.8 5 1^{+} 11 3 2289.868 3098.56 20 61 23 29.8299 3-3128.06 13 100 7 0 4^{-} 727.1[&] 3 <2.0 1(-) 2^{-} 3146.50 2419.160 1187.45 8 2^{+} 91 1959.071 1503.00 10 55 6 1643.638 0+ D Additional information 51. I_{γ}: weighted average of 49 8 from (α ,n γ), 59 6 from (n, γ)) E=thermal. Mult.: from $\gamma(\theta)$ in $(p,n\gamma)$. Additional information 52. 2346.05 10 100 8 800.1431 2-D(+O)+0.12 I_{γ} : from $(\alpha, n\gamma)$. Mult., δ : from $\gamma(\theta)$ in $(p, n\gamma)$. 3153.82 $(2^{-},3)$ 397.28 17 82 2756.62 2^{+} 756.4[&] 6 <21[&] 2397.190 4-1509.9[&] 3 <5.8 1643.638 0^{+} Multipolarity=(M2,E3 or M3) if this transition is from this level to 0^+ . 3153.5 3 100 8 0 4-Additional information 53. 3228.62 2^{-} 938.72 6 39 4 2289.868 1^{+} [E1] B(E1)(W.u.)=0.004 +19-2 2428.28 9 100 12 800.1431 2-Additional information 54. 3198.6 3 589 29.8299 3-Additional information 55. B(E2)(W.u.)=1.5 +70-9 3229.4 4 518 0 4-[E2] Additional information 56. E_{γ}, I_{γ} : from (³⁰Si, np γ). 7^{+} 3353.46 (6^{+}) 810.79 24 100 18 2542.79 E_{γ} , I_{γ} : from (³⁰Si, np γ). 2461.3 11 53 10 891.394 5-620.96[&] 7 <23[&] 3367.94 $(2,3)^{-}$ 2746.91 3-1320.9 4 100 10 2047.338 2^{-} 2568.8[&] 4 <11 800.1431 2-3338.2 3 80 20 29.8299 3-3368.9 6 33 10 0 4-3393.65 2^{-} 1434.50 6 28 *3* 1959.071 2+ 2593.32 10 100 10 800.1431 2- 2^{+} 627.66 3 3414.34 8.2 9 2786.645 3+ 1771.4 & 5 <2.7[&] 1643.638 0+ 2614.21 9 100 6 800.1431 2-3384.66 24 34 4 29.8299 3-3439.18 (2^{+}) 1335.48 18 2.1 4 2103.68 1-1480.09 4 100 10 1959.071 2+ D(+Q) +0.2 2 1795.45 4 0^{+} 879 1643.638 2638.93 11 68 5 800.1431 2-

17

From ENSDF

 $^{40}_{19}\mathrm{K}_{21}\text{--}17$

 $\gamma(^{40}K)$ (continued)

E _i (level)	J^{π}_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Comments
3486.09	2-	376.53 3	12.9 17	3109.56	1+,2+	
		678.13 ^{&} 20	<11.2 ^{&}	2807.88	$(1,2)^{-}$	
		756.4 ^{&} 6	<33 <mark>&</mark>	2730.357	1	
		1195.81 [‡] 7	23.3	2290.551	3-	
		1438.72 4	91 10	2047.338	2-	
		2685.6 <i>3</i>	100 21	800.1431	2-	
3557.41	$(1^{-},2^{+},3^{-},4^{+})$	528.76 ^{&} 14	<1.7 ^{&}	3027.976	$(2^-, 3^+)$	
		981.03 [‡] 7	10.1 12	2575.93	2+	
		1267.5 ^{&} 3	<10.3 ^{&}	2289.868	1^{+}	
		1487.42 ^{&} 9	<9.5 <mark>&</mark>	2069.802	3-	
		1509.9 ^{&} 3	<2.2 ^{&}	2047.338	2^{-}	
		3526.99 [‡] 10	100 7	29.8299	3-	
3599.20	2-	613.384 24	21.4 24	2985.84	$(2^{-},3^{+})$	
		1023.21 4	27 3	2575.93	2+	
		1201.86 5	11.2 12	2397.190	4-	
		1308.9 4	4.5 18	2289.868	1+	
		1496.0 <i>3</i>	5.4 22	2103.68	1-	
		1551.77 9	10.7 13	2047.338	2-	
		2799.30 18	100 11	800.1431	2-	
2620.07	2- 2-	3569.30 8	4/3	29.8299	$\frac{3}{(2-2+)}$	
3029.97	2,3	002.20 17	10.5 18	3027.970	$(2, 5^{+})$	
		1232.74 3	535	2397.190	3-	
		3599 62 20	56.6	2009.802	3-	Additional information 57
		3629.94 15	100 9	0	4-	
3663.88	$(1^{-},2,3,4^{+})$	249.54 16	0.93 23	3414.34	2+	
		534.3 ^{&} 3	<0.70 ^{&}	3128.41	$(2^{-},3^{+})$	
		554.741 [‡] 23	10.3 13	3109.56	$1^+, 2^+$	
		678.13 20	<2.1	2985.84	$(2^-, 3^+)$	
		1373.227 [‡] 21	100 10	2290.551	3-	
		1704.73 9	73 9	1959.071	2+	
		3633.88 9	49 3	29.8299	3-	
3712.98	$(2)^{-}$	926.24 15	19 4	2786.645	3^+	
		1452.39 12	20.2	2260.48	3'	
		1754.72+ 17	36 5	1959.071	2+	
2722 40	1.4	3683.3 5	100 30	29.8299	3-	
3738.49	1	14/8.01 6	48 8	2260.48	3 ⁺	
		1091.26 0	16.6 18	2047.338	2	

$\gamma(^{40}K)$ (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Comments
3738.49	1+	1779.14 8	49 <i>3</i>	1959.071	2+	
		2094.61 10	7.2 8	1643.638	0^{+}	
		2938.32 9	100 6	800.1431	2-	
3768.4	$(2)^{-}$	620.96 <mark>&</mark> 7	<48 <mark>&</mark>	3146.50	1(-)	
		2967.8 <i>3</i>	100 12	800.1431	2-	
3797.48	1+	383.01 18	2.5 5	3414.34	2+	
		811.39 13	2.9 5	2985.84	$(2^{-},3^{+})$	
		1221./1 /	8.5 9	2373.93	2 · 2+	
		1929 (1 2 9	554	1050.071	5 2+	
		1838.01 0	30 <i>3</i> 100 <i>10</i>	1959.071	2 ⁺ 0 ⁺	
2021 45	2-	$2155.01 + 225.44 \times 14$	<11 1 X	2486.00	0	
3821.45	Ζ	335.44 ^{cc} 14	<11.1	3480.09	2	
		$1034.28^{\circ} 20$ 1074 30 0	<10.6	2787.32	3,4 3-	
		1090.9.3	10.3	2730 357	1	
		1424.229 23	100 11	2397.190	4-	
		1530.7 3	16 4	2290.551	3-	
		3791.9 <i>3</i>	50 8	29.8299	3-	
		3822.17 [‡] <i>13</i>	73 5	0	4-	
3840.27	$(1,2^+)$	730.48 15	3.9 7	3109.56	$1^+, 2^+$	
		1771.4 ^{&} 5	<5.0	2069.802	3-	
		1881.20 5	81 8	1959.071	2+	
		2196.61 5	55 7	1643.638	0^+	
2969 65	2-	3040.24 13	100 /	800.1431	2	
3808.03	Z	434.19 0 640 4 6	0.1 8 6 7 4	3228 62	2-	
		1121.77 7	18.2	2746.91	3-	
		1578.97 12	5.6 7	2289.868	1+	
		1765.24 15	36 4	2103.68	1-	
		3068.7 4	40 7	800.1431	2-	
		3838.50 7	100 7	29.8299	3-	
2072 22		3868.3 10	19.8	0	4-	7 1 1 1 1 1 1 1 1 1 1
3872.33	$(/^{+})$	518.97 26	7.0 18	3353.46	(6 ⁺)	E_{γ},I_{γ} : from (³⁰ Si,np γ).
		993.1 4	9.4 18	2878.99	6^+	E_{γ},I_{γ} : from (³⁰ Si,np γ).
2007 01	(1-2-)	1329.00 20	100 18	2542.79	2+	E_{γ}, I_{γ} : from (³⁰ S1, np γ).
300/.01	(1,2)	1262 1 3	54 4 22 A	2750.02	∠ 0 [−]	
		1597.88 4	95 10	2289.868	1+	
		3088.3 5	62 13	800.1431	2-	
		3857.97 11	100 7	29.8299	3-	

$\gamma(^{40}K)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$
3924.07	$(2^{-},3^{+})$	1348.06 14	12.6 15	2575.93	2+
		1634.26 8	100 8	2289.868	1+
		1964.27 23	13.4 22	1959.071	2+
		3895.7 11	76 40	29.8299	3-
4020.39	$(2)^{-}$	534.3 ^{&} 3	<2.8	3486.09	2-
		626.1 ^{&} 3	<3.1	3393.65	2-
		1034.28 20	<12	2985.84	$(2^{-},3^{+})$
		1213.53 [‡] 8	14.7 <i>16</i>	2807.88	$(1,2)^{-}$
		1916.51 [‡] 6	81 9	2103.68	1-
		1973.00 4	100 9	2047.338	2^{-}
		3220.08 21	75 9	800.1431	2^{-}
4104.49	(1-,2,3-)	440.77 [‡] 7	4.7 7	3663.88	$(1^{-},2,3,4^{+})$
		504.5 5	6.3 18	3599.20	2-
		1118.38 <i>13</i>	5.5 7	2985.84	$(2^{-},3^{+})$
		1813.94 14	7.3 9	2290.551	3-
		2001.24 20	13.8 20	2103.68	1-
		2057.07 5	14.2 16	2047.338	2-
		3304.24 11	100 7	800.1431	2-
4110.79	2	1001.05+ 5	25 3	3109.56	$1^+, 2^+$
		1082.92 7	62 7	3027.976	$(2^{-},3^{+})$
		1124.91 6	37 4	2985.84	$(2^{-},3^{+})$
		1354.12 3	50 2	2/56.62	2
		2467.31 10	21 2	1043.038	0,
		3310.9 J 4080 60 12	3/9	20 8200	2 2-
		4080.09 12	98.9	0	3 4 ⁻
4149.04	$(2^{-},3^{+})$	$756.4^{\&} 6$	<7 <mark>&</mark>	3393.65	+ 2 ⁻
	(_ ,_ ,	920 12 18	<1 5 ^{&}	3228 62	2-
		1162 59 24	28.5	2985 84	$(2^{-}3^{+})$
		1751.76.5	20.1 27	2397.190	4-
		1858.51 5	48 5	2290.551	3-
		1888.43 8	8.8 10	2260.48	3+
		3348.91 10	100 6	800.1431	2^{-}
		4148.4 <i>3</i>	12.0 16	0	4-
4180.15	(3 ⁻)	740.89 6	100 12	3439.18	(2^{+})
		951.16 [‡] 7	16.5 19	3228.62	2-
		1761.10 ^{&} <i>17</i>	<11.5 <mark>&</mark>	2419.160	2-
		1919.28 20	579	2260.48	3+
		2109.9 <i>3</i>	25 8	2069.802	3-

	Adopted Levels, Gammas (continued)												
						$\gamma(^{40}\text{K})$	(continued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [#]	Comments						
4180.15	(3-)	2221.27 11	70 9	1959.071	2+								
4012.00	(2- 2+)	3286.4 8	58 <i>19</i>	891.394	5-								
4213.08	$(2, 3^{*})$	727.1° 3	<10.1	3480.09	2 2+								
		2143.37 11	100 12	2069.802	3-								
		2568.8 ^{&} 4	<24 ^{&}	1643.638	0^{+}		Multipolarity= $(M2.E3 \text{ or } M3)$ if this transition is from this level to 0^+ .						
4251.70	(1,2 ⁻)	1625.67 14	100	2626.00	0-								
4253.70	$(1,2)^{-}$	1100.13 18	2.5 4	3153.82	(2 ⁻ ,3)								
		1267.5° 3	<6.1 ^{X}	2985.84	$(2^{-},3^{+})$								
		2149.93 5	25.1 25 27 14	2103.68	1 3-								
		2206.35 10	44 5	2047.338	2-								
		3452.2 10	100 6	800.1431	2-								
4280 42	2-	4223.66 /	49 <i>3</i> 84 <i>4</i> 3	29.8299	$\frac{3}{2^+}$								
1200.12	2	2233.0 4	43 43	2047.338	2-								
		3480.6 5	35 8	800.1431	2-								
		4249.5 4	32 4	29.8299	3^{-}								
4313.94	2-	4280.33 22	100 11	3109.56	$^{4}_{1^{+}.2^{+}}$								
4350.47	(2 ⁻)	1365.06 24	47 9	2985.84	$(2^{-},3^{+})$								
		2246.3 3	100 22	2103.68	1-								
4365 77	8+	4319.6 5	49 9 18 6	29.8299	3 6 ⁺	F2	$B(F2)(W_{H}) - 41 + 61 - 24$						
+303.11	0	1400.7 5	10.0	2070.77	0	12	E_{γ} : weighted average of 1486.90 34 from (³⁰ Si,np γ) and 1486.3 5 from						
							(¹⁶ O,npγ).						
							I_{γ} : from (¹⁶ O,np γ).						
		1822.0.2	100 21	0540.70	7+		Mult.: from $\gamma(\theta)$ and RUL based on measured $T_{1/2}$ in (¹⁰ O,np γ).						
		1822.9 2	100 21	2542.79	1		E_{γ} : weighted average of 1822.85 21 from (**S1, np γ) and 1822.9 5 from ${}^{26}Mg({}^{16}O np\gamma)$						
							I_{γ} : from (¹⁶ O,np γ).						
4383.7	0^{+}	1653	32 4	2730.357	1		I'_{γ} : from (p,n γ).						
1205 99	(0) =	2094	100 4	2289.868	1 ⁺		I_{γ} : from (p,n γ).						
4393.88	(2)	1267 5 20	29 3 ~20 &	5/58.49 2128/11	$(2^{-}2^{+})$								
		1665.43 4	53 6	2730.357	(2,5)								
		1820.35 [‡] 5	100 11	2575.93	2+								
		2348.72 9	89 11	2047.338	2-								
4419.37	$(2^{-},3,4^{+})$	756.4 <mark>&</mark> 6	<40 ^{&}	3663.88	$(1^-, 2, 3, 4^+)$								

 $^{40}_{19}\mathrm{K}_{21}\text{--}21$

$\gamma(^{40}\text{K})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
4419.37	(2 ⁻ ,3,4 ⁺)	862.2 ^{&} 3 1265.54 9 1843.33 9 2022 32 17	<6.0 ^{&} 100 <i>12</i> 33 <i>4</i> 83 <i>12</i>	3557.41 3153.82 2575.93 2307 190	$(1^{-},2^{+},3^{-},4^{+})$ $(2^{-},3)$ 2^{+} 4^{-}
4463.61	(1 ⁻ ,2,3,4 ⁻)	2022.32 17 2393.84 12 2416.06 11 3663.32 9	83 12 25 3 44 5 100 7	2069.802 2047.338 800.1431	3- 2- 2-
4473.08	(2 ⁻ ,3,4 ⁻)	1034.28 ^{&} 20 1079.44 13 1487.42 ^{&} 9 1725.68 ^{&} 17	<9.5 ^{&} 25 3 <24 ^{&} <8.2 ^{&}	3439.18 3393.65 2985.84 2746.91	(2^+) 2^- $(2^-,3^+)$ 3^-
4537.07	(1 ⁻ ,2,3)	4472.80 11 798.8 ^{&} 3 1427.45 18 1961.11 6 2577.63 10 3737.01 10 4506 96 7		0 3738.49 3109.56 2575.93 1959.071 800.1431 29 8299	$ \begin{array}{c} 4 \\ 1^+ \\ 1^+, 2^+ \\ 2^+ \\ 2^- \\ 3^- \end{array} $
4544.13	(0 ⁻ to 4 ⁻)	1058.03 <i>4</i> 3743.2 <i>3</i>	53 6 100 <i>14</i>	3486.09 800.1431	2- 2-
4662.4 4666.49	(2 ⁻ to 6 ⁻) (2 ⁻ to 5 ⁻)	4662.1 <i>3</i> 1680.8 <i>4</i> 2375.85 <i>5</i> 4667.0 <i>4</i>	100 8.8 27 100 11 97 19	0 2985.84 2290.551	4^{-} (2 ⁻ ,3 ⁺) 3^{-} 4^{-}
4744.14	(2+)	563.86 6 903.878 23 946.29 [‡] 8 1144.7 5 1935.7 3 2013.90 20 2168.16 4 2454.7 3 2483.8 3 2784.4 4 3100.42 20 3943.81 6 524.2 ^{&} 2	7.4 9 15.3 15 3.8 4 8 3 12.8 23 17 3 18.3 19 2.6 4 3.0 8 21 5 38 14 100 5	4180.15 3840.27 3797.48 3599.20 2807.88 2730.357 2575.93 2289.868 2260.48 1959.071 1643.638 800.1431	$ \begin{array}{c} (3^{-}) \\ (1,2^{+}) \\ 1^{+} \\ 2^{-} \\ (1,2)^{-} \\ 1 \\ 2^{+} \\ 1^{+} \\ 3^{+} \\ 2^{+} \\ 0^{+} \\ 2^{-} \\ (1,2)^{-} \end{array} $
4788.92	2-	534.3 ^{&} 3 678.13 ^{&} 20 920.12 ^{&} 18	<3.5 ^{&} <10.4 ^{&} <6.5 ^{&}	4253.70 4110.79 3868.65	(1,2) ⁻ 2 2 ⁻

22

 $^{40}_{19}\mathrm{K}_{21}$ -22

	Adopted Levels, Gammas (continued)													
					γ	⁴⁰ K) (cont	inued)							
					<u>/ (</u>									
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [#]	Comments							
4788.92	2-	1761.10 ^{&} 17 2031.6 3 2162.16 [‡] 17 2528.44 11	<11.5 ^{&} 100 <i>15</i> 15.8 <i>19</i> 53 6	3027.976 2756.62 2626.00 2260.48	$(2^{-},3^{+})$ 2^{+} 0^{-} 3^{+}									
4807.92	(0 to 3) ⁻	3989.07 [‡] 14 2077.41 13 4008.1 3	93 7 100 9 42 5	800.1431 2730.357 800.1431	2 ⁻ 1 2 ⁻									
4812.01	(8 ⁺)	939.28 <i>23</i> 2269.0 <i>5</i>	100 <i>18</i> 72 <i>14</i>	3872.33 2542.79	(7 ⁺) 7 ⁺		E_{γ} , I_{γ} : from (³⁰ Si,np γ). E_{γ} , I_{γ} : from (³⁰ Si,np γ).							
4851.40	(2 ⁻ ,3,4 ⁺)	2892.19 <i>15</i> 4851.16 <i>25</i>	100 8 33 4	1959.071 0	2+ 4-									
4872.56	(2,3) ⁻	335.44 ^{&} 14 1718.68 4 1725.68 ^{&} 17 2115.77 14 4842.8 4 4872 47 14	<16 ^{&} 66 3 <13 ^{&} 12.3 16 30 5	4537.07 3153.82 3146.50 2756.62 29.8299	$(1^{-},2,3)$ $(2^{-},3)$ $1^{(-)}$ 2^{+} 3^{-} 4^{-}									
4875.57	9+	2332.87 22	40 7 100 <i>11</i>	4365.77 2542.79	* 8+ 7+	E2	 E_γ: weighted average of 509.90 20 from (³⁰Si,npγ) and 509.4 10 from (¹⁶O,npγ). I_γ: weighted average of 37 7 from (³⁰Si,npγ) and 56 17 from (¹⁶O,npγ). B(E2)(W.u.)>1.0 I_γ: weighted average of 2332.89 22 from (³⁰Si,npγ) and 2332.8 4 from (¹⁶O,npγ). I_γ: from (¹⁶O,npγ). 							
4960.36	(2,3 ⁻)	1402.73 9 1566.21 [‡] 7 1832.01 5 2173.67 8 2204.08 [‡] 10 2668.8 4 2857.15 [‡] 15	37 4 46 5 34 4 28 3 100 12 31 6 85 9	3557.41 3393.65 3128.41 2786.645 2756.62 2290.551 2103.68	$(1^{-},2^{+},3^{-},4^{+})$ 2^{-} $(2^{-},3^{+})$ 3^{+} 2^{+} 3^{-} 1^{-} 2^{-}		Mult.: from $\gamma(\theta, \text{pol})$ in (¹⁶ O, np γ).							
4993.26	(2 ⁻)	2912.6 3 4929.3 [‡] 3 813.12 7 1846.72 6 2702.60 16 2922.91 20	43 6 54 6 14 2 32 3 85 9 100 9	2047.338 29.8299 4180.15 3146.50 2290.551 2069.802	2 3- (3 ⁻) 1 ⁽⁻⁾ 3 ⁻ 3 ⁻									

From ENSDF

					Adopted Le	vels, Gamm	<mark>as</mark> (continu	ied)
					<u> </u>	⁴⁰ K) (contin	ued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
4993.26	(2 ⁻)	3034.43 <i>17</i> 4962.2 <i>4</i>	89 7 32 6	1959.071 29.8299	2+ 3-			
5023.7	(2 ⁻ ,3,4 ⁻)	1255.29 <i>9</i> 2627.7 [‡] <i>3</i>	59 7 100 <i>17</i>	3768.4 2397.190	(2) ⁻ 4 ⁻			
5063.37	(2 ⁻ ,3 ⁺)	1695.44 8 1953.74 6 2644.0 3 5062.9 4	32 4 100 10 84 13 23 3	3367.94 3109.56 2419.160 0	(2,3) ⁻ 1 ⁺ ,2 ⁺ 2 ⁻ 4 ⁻			
5111.9	(2,3)-	2688.1 ^{<i>a</i>} 4	100 26	2423.7?	4-			E_{γ} : placed by 2013Fi01 in (n,γ) E=thermal to a level at 2324. But this level was neither observed in other work nor listed in Table 3 of populated levels in 2013Fi01. The evaluator has considered this placement as questionable.
5189.89	(2 ⁻)	5111.5 / 976.85 6 1393.16 [‡] 8 2403.04 9 2459.48 5 4389.32 <i>18</i> 5188.8 <i>3</i>	43 11 29 3 34 4 32 4 52 6 100 8 14.3 16	0 4213.08 3797.48 2786.645 2730.357 800.1431 0	$ \begin{array}{c} 4^{-} \\ (2^{-},3^{+}) \\ 1^{+} \\ 3^{+} \\ 1 \\ 2^{-} \\ 4^{-} \end{array} $			
5214.23 5247.1	2-	3144.30 <i>19</i> 5216.9 6	100 100	2069.802 29.8299	3- 3-			
5332.91 5488.65	(9 ⁺) (2 ⁻ ,3,4 ⁻)	2790.53 29 1931.23 20 2359.8 8 2680.4 5 3418.5 6 5488.5 5	100 100 9 11 7 23 6 25 9 44 9	2542.79 3557.41 3128.41 2807.88 2069.802 0	$7^{+} (1^{-},2^{+},3^{-},4^{+}) (2^{-},3^{+}) (1,2)^{-} 3^{-} 4^{-}$			E_{γ} : from (³⁰ Si,np γ).
5891.90	(9 ⁻)	559.28 22 1016.6 4 1079.1 5 1525.85 27	63 <i>11</i> 48 9 76 <i>14</i> 100 <i>20</i>	5332.91 4875.57 4812.01 4365.77	(9 ⁺) 9 ⁺ (8 ⁺) 8 ⁺			$\begin{split} & E_{\gamma}, I_{\gamma}: \text{ from } (^{30}\text{Si}, \text{np}\gamma). \\ & E_{\gamma}, I_{\gamma}: \text{ from } (^{30}\text{Si}, \text{np}\gamma). \\ & E_{\gamma}, I_{\gamma}: \text{ from } (^{30}\text{Si}, \text{np}\gamma). \\ & E_{\gamma}, I_{\gamma}: \text{ from } (^{30}\text{Si}, \text{np}\gamma). \end{split}$
6098.22	(1 ⁻ ,2,3,4 ⁻)	1702.35 [‡] 3 2539.87 [‡] 7 6067.6 3	100 9 82 9 15.2 15	4395.88 3557.41 29.8299	$(2)^{-} (1^{-}, 2^{+}, 3^{-}, 4^{+}) 3^{-}$			
6227.01	(8,10) ⁻	1351.51 18	100 8	4875.57	9+	E1(+M2)	-0.07 5	 B(E1)(W.u.)>0.00016; B(M2)(W.u.)>0.16 E_γ: weighted average of 1351.70 21 from (³⁰Si,npγ) and 1351.37 18 from (¹⁶O,npγ). I_γ: from (¹⁶O,npγ). Mult.,δ: from γ(θ,pol) in (¹⁶O,npγ).

From ENSDF

$\gamma(^{40}\text{K})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	Comments
6227.01	(8,10)-	$1861.3^{a} 6$	<5	4365.77 8+			E_{γ}, I_{γ} : from (¹⁶ O, np γ).
7033.0	(9 ⁻)	1142.3 5	<2 59 11	5891.90 (9 ⁻)			E_{γ}, I_{γ} . Holin ($O, I_{\gamma}, I_{\gamma}$). E_{γ}, I_{γ} : from (${}^{30}Si, I_{1}\gamma$).
7472.2	(9 ⁻ ,11 ⁻)	2219.7 <i>5</i> 1245.31 22	100 <i>18</i> 100 <i>19</i>	$\begin{array}{r} 4812.01 (8^{+}) \\ 6227.01 (8,10)^{-} \end{array}$	D+Q	+0.13 7	E_{γ}, I_{γ} : from (³⁰ Si,np γ). E_{γ} : weighted average of 1245.10 <i>31</i> from (³⁰ Si,np γ) and 1245.42 <i>22</i> from
							Mg(16 O,np γ). I _{γ} : from (30 Si,np γ).
							Mult., δ : from $\gamma(\theta)$ in (¹⁶ O,np γ).
		1579.3 5	37 8	5891.90 (9-)			E_{γ}, I_{γ} : from (³⁰ Si, np γ).
7748.0	(9 ⁻ ,10 ⁻)	1520.88 30	30 6	6227.01 (8,10)-			E_{γ}, I_{γ} : from (³⁰ Si, np γ).
		2872.9 9	100 18	4875.57 9+			E_{γ} , I_{γ} : from (³⁰ Si, np γ).
7994.1	(9 ⁻ to 12 ⁻)	1767.1 5	100	6227.01 (8,10)-			E_{γ} : from (³⁰ Si,np γ).

[†] From (n, γ) E=thermal, unless otherwise noted. Other values are either from individual reactions or weighted averages when quoted precision is comparable.

[‡] Uncertainties were increased by a factor of 2 in the least-squares fit, except for 554.741 γ , 1213.53 γ , 1393.16 γ , 1466.11 γ , 1820.35 γ , and 2539.87 γ , increased by a factor of 4. Poor fit for 554.741 γ with the fitted energy deviates by about 5 times the quoted energy uncertainty.

[#] From $\gamma(\theta)$ data in (p,n γ), unless otherwise noted.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

25

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{40}_{19}
m K_{21}$

Level Scheme (continued)

 $^{40}_{19}
m K_{21}$

Level Scheme (continued)

 $^{40}_{19}
m K_{21}$

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{40}_{19}\text{K}_{21}$

Level Scheme (continued)

 ${}^{40}_{19}
m K_{21}$

Level Scheme (continued)

Level Scheme (continued)

From ENSDF

 $^{40}_{19}\mathrm{K}_{21}\text{--}35$

 $^{40}_{19}\mathrm{K}_{21}\text{--}35$