⁴¹K(p,d) **1973Wi16**

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

 $J^{\pi}(^{41}\text{K g.s.})=3/2^{+}$.

1973Wi16 (also thesis by 1973WiYW): E=15 MeV deuteron beam was produced from a tandem Van de Graaff accelerator. Targets were 100 and 200 μ g/cm² KCOOH (99.18% in ⁴¹K). Reaction products were momentum analyzed with a broad-range split-pole magnetic spectrograph (FWHM=15-30 keV) and detected by a triple counter telescope. Measured $\sigma(\theta)$. Deduced levels, J, π , L-transfer, spectroscopic factors from DWBA analysis. Comparisons with shell-model calculations.

All data are from 1973Wi16, unless otherwise noted.

⁴⁰K Levels

Spectroscopic factor is defined as $C^2S=(2j+1)/N\times\sigma_{exp}/\sigma_{DWBA}$ with N=3.33 and j the angular momentum of transferred particle.

E(level) [†]	<u>L</u> ‡	$C^2S^{\ddagger \#}$	Comments	
0	3	0.51 12		
30	3	0.53 11		
800	3+1	0.074 10	C^2S : for L=3; 0.012 3 for L=1.	
891	3	0.28 5		

[†] Rounded values from Adopted Levels.

[‡] Extracted from comparisons of measured differential cross sections with DWBA calculations.

[#] $f_{7/2}$ orbital assumed for L=3 and $p_{3/2}$ orbital for L=1.