⁴⁰Ca(n,pγ),(n,p) **1972Di10,1967An07**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015				

1972Di10: (n,p γ) E=4.85-8.05 MeV. Natural target. Measured E γ , I γ , σ at 4.85, 5.40, 5.90, 6.45, 7.00, 7.50 and 8.05 MeV. 1967An07: (n,p) E=14.4 MeV. Measured proton spectrum, $\sigma(\theta)$, FWHM=600 keV.

Other (n,p) measurements:

Additional information 1.

1992Pa06: E=60-260 MeV. Measured $\sigma(\theta)$. Deduced distributions of Gamow-Teller (GT) ($\Delta L=0, \Delta S=1, \Delta J=1$) strength, Giant-dipole resonance (GDR, $\Delta S=0$), and Giant-spin dipole resonance (GDSR, $\Delta S=1$).

1989TrZT: Measured $\sigma(\theta)$. Deduced spin dipole resonance (CI)

1988Ma53: Analyzed single-nucleon transfer σ . Deduced gs occupation numbers, total B(GT).

1980Ba50: E=2.7-5.5 MeV. Measured σ .

1974Ba16: E=2.41-2.86 MeV. Measured σ .

1972Fo21, 1961Ur03: E=5.85 MeV. Measured $\sigma(\theta)$ for 0+30 doublet.

1969Wi12: E=14.6 MeV. Measured $\sigma(\theta)$.

1968Ka05: E=14.1 MeV. Measured $\sigma(\theta)$.

1967Me11: E=152 MeV. Measured proton spectrum.

1961Al34: E=15 MeV. Measured σ (E).

1956Da23: (n,p γ) E=2.557 MeV. Three γ rays reported at 30, 767 and 877 from first three excited states. Data are from 1972Di10, unless otherwise noted.

Differ	ential cros	s sections	(in mb/sr)	at differen	t energies	(125°)
Eγ	4.85 MeV	5.40 MeV	5.90 MeV	6.45 MeV	7.00 MeV	8.05 MeV
522			0.15 8	0.30 14	0.38 15	
646	0.40 12	0.57 12	0.4 1	0.63 10	0.89 22	0.70 9
770	12.7 14	10.1 12	8.9 13	14.2 15	15.4 16	17.0 17
891		0.70 11	0.95 14	1.51 20	1.31 19	1.04 15
1087		0.12 7	0.15 6	0.49 8	0.69 15	0.97 11
1159	3.5 4	3.4 4	3.4 5	4.7 6	5.7 6	6.2 7
1248	0.60 10	0.90 11	0.80 12	1.08 13	1.12 14	1.15 13
1270	0.26 10	0.20 7	0.20 4	0.37 12	0.27 10	0.49 8
1619	0.23 11	0.90 13	0.77 12	1.24 16	0.97 13	0.90 20
1929	0.34 10	0.33 9	0.25 5	0.65 9	0.48 13	1.04 21
1957				0.41 6	0.50 12	0.50 19
2008			0.45 10	1.18 13	1.27 14	0.88 18
2018	0.62 10	0.80 12	0.62 10	0.56 12	0.51 15	0.64 12
2040	0.74 12	1.10 13	0.93 14	1.28 24	1.23 24	
2072	1.20 15	1.84 21	1.8 3	2.48 27	2.26 26	2.65 40
2231		0.57 12	0.70 13	0.61 9		
2291	0.35 15	0.41 12	0.70 13			
2367		0.41 12	0.70 13	1.05 13	1.11 20	0.70 11
2547	0.46	0.46 13	0.64 12	1.35 15	1.46 19	1.43 20

⁴⁰K Levels

E(level) [‡]	$J^{\pi \dagger}$
0#	4-
30 [#]	3-
800	2^{-}
891	5-
1644	0^{+}

40 Ca(n,p γ),(n,p) 1972Di10,1967An07 (continued)

⁴⁰K Levels (continued)

E(level) [‡]	$J^{\pi \dagger}$	$E(level)^{\ddagger}$	$J^{\pi \dagger}$	E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	$J^{\pi \dagger}$
1959	2+	2261	3+	2419	2-	2757	2+
2048	2-	2290	1^{+}	2558? [@]		2808	$(1,2)^{-}$
2070	3-	2291	3-	2577	2^{+}		
2103	1-	2397	4-	2626	0^{-}		

[†] From Adopted Levels.

[‡] 0+30 and 800+891 are unresolved in (n,p) (1967An07).

[#] Total cross section for 0+30=365 mb 27 at E=5.85 MeV (1972Fo21).

^(a) Level not reported in any other study of 40 K. It is considered as suspect by the evaluator.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$d\sigma/d\Omega (mb/sr)^{\ddagger}$	\mathbf{E}_{f}	\mathbf{J}_f^π
30	3-	30 ^c 2		0	4-
800	2-	770	17.0 17	30	3-
891	5-	891	3.6 4	0	4-
1959	2+	1159	6.1 [#] 6	800	2-
		1929	0.87 9	30	3-
2048	2^{-}	1248	1.07 13	800	2^{-}
		2018	0.79 12	30	3-
		2048	0.86 12	0	4-
2070	3-	1270	0.52 12	800	2-
		2040	2.07 23	30	3-
		2070 <mark>b</mark>	≈1.45	0	4-
2103	1-	2073 ^b	≈0.73	30	3-
2261	3+	2231	0.65 22	30	3-
2290	1^{+}	646	0.75 10	1644	0^+
2291	3-	2291	0.70 [@] 13	0	4-
2397	4-	2367 ^a	0.80 16	30	3-
2419	2-	1619	1.15 20	800	2^{-}
2558?		2558	0.21 9	0	4-
2577	2^{+}	2547	1.56 19	30	3-
2626	0^{-}	522	0.38 ^{&} 15	2103	1-
2757	2+	1957	0.40 13	800	2-
2808	$(1,2)^{-}$	2008 ^a	1.03 12	800	2-
		2808 ^{ad}	0.73 14	0	4-

 $\gamma(^{40}K)$

[†] 1972Di10 give $\Delta E\gamma = 2$ keV for unplaced γ rays but not for those placed. The evaluator have assumed $\Delta E\gamma = 2$ keV also for those γ -ray energies.

[‡] From 1972Di10, at E=7.50 MeV, unless otherwise noted. 1972Di10 give cross section data at E=4.85, 5.45, 5.90, 6.45, 7.00 and

[@] At E=5.90 MeV.

^A At E=7.00 MeV. ^a Wide peak at all neutron energies, may have another component.

^b 2070 and 2073 are unresolved.

^c From 1956Da23.

40 Ca(n,p γ),(n,p) 1972Di10,1967An07 (continued)

$\gamma(^{40}\text{K})$ (continued)

 d Placement of transition in the level scheme is uncertain. x γ ray not placed in level scheme.

⁴⁰Ca(n,pγ),(n,p) 1972Di10,1967An07

Legend

Level Scheme

Intensities: % photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

