## $^{40}$ Ca( $\mu^-, \nu\gamma$ ) **2006Me08**

| History         |          |                   |                        |  |
|-----------------|----------|-------------------|------------------------|--|
| Туре            | Author   | Citation          | Literature Cutoff Date |  |
| Full Evaluation | Jun Chen | NDS 140, 1 (2017) | 30-Sep-2015            |  |

2006Me08: The  $\mu^-$  beam was obtained from decay of  $\pi^-$  beam at 90 MeV/c provided by the beamline M9B at TRIUMF. Target was pure natural calcium.  $\gamma$  rays were detected with two HPGe detectors. Measured E $\gamma$ , I $\gamma$ , E(x ray), I(x ray). Deduced levels,  $\gamma$ -ray yields.

| Muonic      | Lyman series for | natural Calcium      |
|-------------|------------------|----------------------|
| $\mu$ x ray | Energy           | Intensity in percent |
| 2p-1s       | 783.659 25       | 83.8 10              |
| 3p-1s       | 940.63 10        | 6.2 2                |
| 4p-1s       | 995.48 10        | 2.0 1                |
| 5p-1s       | 1020.81 10       | 2.0 1                |
| 6p-1s       | 1034.62 10       | 1.8 1                |
| 7p-1s       | 1042.71 20       | 1.4 1                |
| (8-∞)p-1s   | 1046-1063        | 2.8 4                |

Muonic Balmer series for natural Calcium

| $\mu$ x ray    | Energy                                | Intensity in percent             |
|----------------|---------------------------------------|----------------------------------|
| 3d-2p          | 157.35 13                             | 64.5 9                           |
| 4d-2p<br>5d-2p | 212.03 10<br>237.31 10                | 8.85 20<br>4.34 20               |
| 6d-2p<br>7d-2p | 251.06 <i>10</i><br>259 45 <i>1</i> 0 | 3.29 <i>20</i><br>1 37 <i>20</i> |
| (8-∞)d-2p      | 261-277                               | 1.4 3                            |

## <sup>40</sup>K Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | Percent Yield per muon capture# | Comments                     |
|-----------------------|--------------------|---------------------------------|------------------------------|
| 0                     | 4-                 |                                 |                              |
| 29.83                 | 3-                 |                                 |                              |
| 800.14                | 2-                 | 5.0 5                           | Known cascading=2.8% 5.      |
| 891.40                | 5-                 | 0.2 1                           | Known cascading= $0.03\%$ 2. |
| 1643.64               | $0^{+}$            | 0.5 4                           | Known cascading=0.37% 15.    |
| 1959.07               | 2+                 | 1.2 2                           | Known cascading=0.04% 2.     |
| 2047.35               | 2-                 | 0.9 3                           |                              |
| 2069.81               | 3-                 | 0.7 3                           |                              |
| 2103.67               | 1-                 | 0.7 2                           | Known cascading=0.43% 6.     |
| 2260.40               | 3+                 | <0.25                           |                              |
| 2289.87               | 1+                 | 0.5 2                           |                              |
| 2290.49               | 3-                 | <0.24                           |                              |
| 2397.17               | 4-                 | < 0.3                           |                              |
| 2419.17               | 2-                 | 0.4 3                           |                              |
| 2625.99               | 0-                 | 0.60 8                          |                              |
| 2730.37               | 1                  | <0.24                           |                              |
| 2807.88               | $(1,2)^{-}$        | 0.34 21                         |                              |
| 3228.67               | 2-                 | <0.8                            |                              |
| 3868.66               | 2-                 | <0.9                            |                              |
| 3887.92               | (1-,2-)            | <0.6                            |                              |

## $^{40}{\rm Ca}(\mu^-,\!\nu\gamma)$ 2006Me08 (continued)

## <sup>40</sup>K Levels (continued)

 $\underline{\gamma}(^{40}\mathrm{K})$ 

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | Percent Yield per muon capture# |
|-----------------------|--------------------|---------------------------------|
| 3923.90               | $(2^{-},3^{+})$    | <1.0                            |
| 4537.06               | $(2^{-})$          | 0.9 4                           |

<sup>†</sup> As listed in 2006Me08 from literature. <sup>‡</sup> From Adopted Levels.

<sup>#</sup> Corrected for known cascading.

| $E_{\gamma}^{\dagger}$ | Percent $\gamma$ -ray yield | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | $\mathbf{J}_{f}^{\pi}$ | Mult. |
|------------------------|-----------------------------|------------------------|----------------------|---------|------------------------|-------|
| 522.32                 | 0.43 6                      | 2625.99                | 0-                   | 2103.67 | 1-                     |       |
| 646.22                 | 0.37 15                     | 2289.87                | $1^{+}$              | 1643.64 | $0^{+}$                |       |
| 770.31                 | 7.8 3                       | 800.14                 | 2-                   | 29.83   | 3-                     |       |
| 843.49                 | 0.3 2                       | 1643.64                | $0^{+}$              | 800.14  | $2^{-}$                |       |
| 891.37                 | 0.23 10                     | 891.40                 | 5-                   | 0       | 4-                     |       |
| 938.72                 | ‡                           | 3228.67                | 2-                   | 2289.87 | $1^{+}$                |       |
| 1086.71                | < 0.2                       | 2730.37                | 1                    | 1643.64 | $0^{+}$                |       |
| 1158.90                | 0.85 15                     | 1959.07                | $2^{+}$              | 800.14  | 2-                     |       |
| 1247.17                | 0.35 12                     | 2047.35                | 2-                   | 800.14  | 2-                     |       |
| 1303.53                | 0.30 8                      | 2103.67                | 1-                   | 800.14  | $2^{-}$                |       |
| 1399.03                | < 0.1                       | 2290.49                | 3-                   | 891.40  | 5-                     |       |
| 1489.77                | 0.11 8                      | 2289.87                | $1^{+}$              | 800.14  | $2^{-}$                |       |
| 1613.84                | 0.5 2                       | 1643.64                | $0^{+}$              | 29.83   | 3-                     | [E3]  |
| 1619.00                | 0.3 2                       | 2419.17                | $2^{-}$              | 800.14  | $2^{-}$                |       |
| 1765.24                | < 0.25                      | 3868.66                | $2^{-}$              | 2103.67 | 1-                     |       |
| 1825.77                | 0.16 6                      | 2625.99                | 0-                   | 800.14  | $2^{-}$                |       |
| 1929.34                | 0.31 15                     | 1959.07                | 2+                   | 29.83   | 3-                     |       |
| 2007.71                | 0.32 20                     | 2807.88                | $(1,2)^{-}$          | 800.14  | $2^{-}$                |       |
| 2017.53                | 0.29 14                     | 2047.35                | 2-                   | 29.83   | 3-                     |       |
| 2039.94                | 0.35 17                     | 2069.81                | 3-                   | 29.83   | 3-                     |       |
| 2047.28                | 0.26 10                     | 2047.35                | 2-                   | 0       | 4-                     |       |
| 2070.08                | 0.27 10                     | 2069.81                | 3-                   | 0       | 4-                     |       |
| 2073.74                | 0.76 18                     | 2103.67                | 1-                   | 29.83   | 3-                     |       |
| 2230.54                | < 0.2                       | 2260.40                | 3+                   | 29.83   | 3-                     |       |
| 2290.58                | < 0.2                       | 2290.49                | 3-                   | 0       | 4-                     |       |
| 2367.17                | < 0.2                       | 2397.17                | 4-                   | 29.83   | 3-                     |       |
| 2389.18                | 0.1 1                       | 2419.17                | 2-                   | 29.83   | 3-                     |       |
| 2397.12                | < 0.4                       | 2397.17                | 4-                   | 0       | 4-                     |       |
| 2428.28                | < 0.3                       | 3228.67                | 2-                   | 800.14  | 2-                     |       |
| 3068.7                 | < 0.4                       | 3868.66                | $2^{-}$              | 800.14  | $2^{-}$                |       |
| 3088.3 5               | < 0.3                       | 3887.92                | $(1^{-}, 2^{-})$     | 800.14  | 2-                     |       |
| 3198.6                 | < 0.25                      | 3228.67                | $2^{-}$              | 29.83   | 3-                     |       |
| 3737.01                | 0.4 2                       | 4537.06                | $(2^{-})$            | 800.14  | $2^{-}$                |       |
| 3838.50                | < 0.4                       | 3868.66                | 2-                   | 29.83   | 3-                     |       |
| 3857.97                | < 0.3                       | 3887.92                | $(1^{-}, 2^{-})$     | 29.83   | 3-                     |       |
| 3895.7                 | < 0.4                       | 3923.90                | $(2^{-},3^{+})$      | 29.83   | 3-                     |       |
| 4506.96                | <1                          | 4537.06                | $(2^{-})$            | 29.83   | 3-                     |       |

<sup>†</sup> As listed in 2006Me08 from literature. <sup>‡</sup> Intensity not listed by 2006Me08, the peak is overlapped by other transitions.





i t

 $\boldsymbol{\omega}$ 

 $^{40}_{19}\mathrm{K}_{21}\text{--}3$