40 S β^- decay (8.8 s) 2006Wi10

		History	Literature Cutoff Date	
Туре	Author	Citation		
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015	

Parent: ⁴⁰S: E=0; $J^{\pi}=0^+$; $T_{1/2}=8.8$ s 22; $Q(\beta^-)=4720 \ 30$; $\%\beta^-$ decay=100.0

 40 S-T_{1/2}: From Adopted Levels of 40 S, taken from 1986Du07.

⁴⁰S-Q(β^{-}): From 2012Wa38.

2006Wi10 (also 1998WiZX,1998WiZV): ⁴⁰S isotope was obtained from the decay of ⁴⁰P isotope produced by fragmentation of a ⁴⁸Ca beam at 70 MeV/nucleon bombarding a 254 mg/cm² ⁹Be target at NSCL, Michigan facility. The fragments were separated by A1200 fragment separator and identified using energy loss (ΔE) versus time-of-flight (TOF) measured by a 500– μ m Si PIN diode (ΔE) and a thin plastic scintillator (TOF), and implanted into 17-mil targets on a rotatable wheel. β particles were detected with a 1-mm-thick plastic scintillator directly downstream of the Al targets and γ rays were detected by two Ge detectors (FWHM=2.5 and 2.9 keV at 1332 keV). Measured $E\gamma$, I γ , E β , I β , $\gamma\gamma$ -coin, $\beta\gamma$ -coin. Deduced levels, J, π , β -decay branching ratios, log *ft*. Comparisons with shell-model calculations.

1986Du07: ⁴⁰S ions were produced by fragmentation of a 60 MeV/nucleon ⁴⁰Ar beam on a 190 mg/cm² Be target at GANIL. Fragments were separated by the LISE spectrometer. β particles were detected with a 1-mm-thick plastic scintillator and γ rays were detected with a 174 cm³ intrinsic Ge detector. Measured E γ , I γ , decay curves. Deduced T_{1/2}, γ -ray branching ratios. Reported four γ rays at 211.6, 431.9, 677.5 and 888.6.

⁴⁰Cl Levels

E(level) [†]	$J^{\pi \ddagger}$
0	2-
211.56 9	1-
431.61 7	$(1^{-},2)$
889.02 10	1^{+}
1292.75 11	(1^{+})
1998.02 <i>21</i>	(1^{+})
2306.23 13	1+

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
$(2.41 \times 10^3 3)$	2306.23	46 4	3.7 2	av Eβ=1009 67
				$I\beta^{-}$: 2006Wi10 give 47 4.
$(2.72 \times 10^3 \ 3)$	1998.02	10 2	4.6 2	av E β =1155 67
$(3.43 \times 10^3 \ 3)$	1292.75	54	5.4 4	av Eβ=1494 68
				$I\beta^{-}$: 2006Wi10 give 6 3.
$(3.83 \times 10^3 \ 3)$	889.02	35 5	4.7 2	av E β =1690 68
				$I\beta^{-}$: 2006Wi10 give 36 4.
$(4.72 \times 10^{3\#} 3)$	0	< 0.5	$>8.8^{1u}$	av E β =2136 69
				$I\beta^{-1}$: from 2006Wi10, shell-model prediction; intensity balance gives 3 7 (or <10).

[†] Deduced by evaluator based on γ -ray intensity imbalance at each level with a normalization of 0.52 *3* from 2006Wi10, unless otherwise noted.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

${}^{40}S \beta^{-}$ decay (8.8 s) 2006Wi10 (continued)

 $\gamma(^{40}\text{Cl})$

I γ normalization: Deduced by 2006Wi10 from relative intensities of strong γ rays from ⁴⁰Cl β^- decay observed in the saturation spectra. The value is 0.54 2 deduced by evaluator assuming $\Sigma(I\gamma$ to g.s.)=100.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
211.59 11	100 3	211.56	1-	0 2-	Additional information 1.
403.70 12	12.6 15	1292.75	(1^{+})	889.02 1+	
431.57 7	49 5	431.61	$(1^{-},2)$	$0 2^{-}$	Additional information 2.
457.4 6	7.7 19	889.02	1+	431.61 (1-,2)	
677.41 <i>12</i>	52 7	889.02	1^{+}	211.56 1-	Additional information 3.
705.20 23	9.5 20	1998.02	(1^{+})	1292.75 (1 ⁺)	
889.04 17	21 3	889.02	1^{+}	$0 2^{-}$	Additional information 4.
1013.57 <i>13</i>	47 <i>3</i>	2306.23	1^{+}	1292.75 (1 ⁺)	
1081.33 18	38 5	1292.75	(1^{+})	211.56 1-	
1292.87 <i>21</i>	16.4 24	1292.75	(1^{+})	$0 2^{-}$	
1786.6 <i>3</i>	9.6 21	1998.02	(1^{+})	211.56 1-	
1874.41 19	42 5	2306.23	1^{+}	431.61 (1 ⁻ ,2)	

[†] From 2006Wi10. [‡] For absolute intensity per 100 decays, multiply by 0.52 *3*.

$\frac{40}{3}$ S β^{-} decay (8.8 s) 2006Wi10

 $^{40}_{17}\text{Cl}_{23}$