Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

 $Q(\beta^{-})=7480 \ 30; \ S(n)=5830 \ 30; \ S(p)=11680 \ 60; \ Q(\alpha)=-9730 \ 30$ 2012Wa38

S(2n)=13900 30, S(2p)=27470 90 (2012Wa38).

First identification of ⁴⁰Cl nuclide by 1956Mo39 via ⁴⁰Ar(n,p).

⁴⁰Cl produced in ⁴⁰Ar(n,p): 1956Mo39, 1965Gr03, 1970Ke12. Others: Thesis (Masters) by E.L. Robinson (Purdue University, 1958), 1968Hu07, 1968Hu15, 1970Lu10, 1972Kl06, 1973Kl02.

A 0.10 s 3 activity in ⁴⁰Cl reported by 1968F110 (also 1968F111) is not convincing and has not been confirmed in any other study. Mass measurements: 1989Mi03, 1984Fi02.

Other reactions:

2012Bh09: ⁴⁰Ar(n,p) E=9-15 MeV. Measured E γ , I γ , σ (E), activation method.

2012Zh06: ⁹Be(⁴⁰Ar,X) and ¹⁸¹Ta(⁴⁰Ar,X) E=57 MeV/nucleon. Measured fragment yields.

2008Kl02: 40Ar(μ^- , ν). Measured isotopic yields.

2007Na31: ¹³⁶Xe(p,X) E=1 GeV. Measured isotopic σ .

2006Ro34: ${}^{2}H({}^{48}Ca,X)$ E=102 MeV/nucleon. Measured production σ .

1999Ai02: Si(40 Cl,X) E=38-80 MeV. Measured mean-energy integrated cross section, deduced strong absorption radii, r_0^2 =1.28 fm² 7, 1.21 fm² 8. 1997Fo01: ²⁰⁸Pb(³⁷Cl,X) E=230 MeV: measured yield.

1988Ma53: ⁴⁰Ar(n,p): analyzed one-nucleon transfer σ data, deduced g.s. occupation numbers for ⁴⁰Ar.

Additional information 1. 1971Ar32: ²³²Th(⁴⁰Ar,X): yield for ⁴⁰Cl production.

⁴⁰Cl Levels

Cross Reference (XREF) Flags

A	^{40}S	β-	decav	(8.8)	s
	-	<i>r</i> -	/	. ~ . ~	

- В
- ${}^{9}\text{Be}({}^{36}\text{S},\alpha p\gamma)$ ${}^{40}\text{Ar}({}^{7}\text{Li},{}^{7}\text{Be}),({}^{11}\text{B},{}^{11}\text{C})$ С
- 208 Pb(40 Ar,X γ) D

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
0 [@]	2-	1.35 min <i>3</i>	ABCD	$\%\beta^{-}=100$ J ^{π} : log ft=4.9 for β^{-} decay to 1 ⁻ level at E=5880 in ⁴⁰ Ar, log ft=5.9 to 3 ⁻ level at E=4083 in ⁴⁰ Ar
				$T_{1/2}$: weighted average of 1.32 min 2 (1972Kl06), 1.44 min 8 (1970Ke12), 1.38 min 2 (thesis (masters) by E.L. Robinson, Purdue University,1958). Other: 1.4 min (1956Mo39).
211.62 13	(1 ⁻)		ABcD	
244.03 [@] 8	(3 ⁻)	<10 ns	BcD	
367.1 4	(2)		ΒD	
431.8 3	$(1 \text{ to } 3^+)$		AB D	J^{π} : 431.58 γ (D) to 2 ⁻ ; 457.8 γ and 1875.6 γ from 1 ⁺ .
601.28 [@] 14	(4 ⁻)	<7 ns	BcD	
680.95 17	(4 ⁻)		BcD	
839.16 ^{@} 15	(5 ⁻)		BCD	
889.5 4	1^{+}		A D	J^{π} : log ft=4.7 from 0 ⁺ in ⁴⁰ S.
1160 40	(4 ⁻)		CD	J^{π} : tentatively assigned by 1984Fi02 in ⁴⁰ Ar(/Li,/Be).
1293.3 5	$(0^{-},1,2)$		Α	J^{π} : 1292.87 γ to 2 ⁻ , 403.70 γ to 1 ⁺ and 1081.33 γ to (1 ⁻).
1580 40			C	
1/40/40			C	
2014.7 ^w 4	(6 ⁻)	≤3.5 ps	BCD	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁴⁰Cl Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}$ ‡	XREF	Comments
2194.2 3	(5)		В	
2307.2 7	1+		A C	XREF: C(2290). J^{π} : log <i>ft</i> =3.7 from 0 ⁺ in ⁴⁰ S.
2413.7 4	(6)		В	
2620.4 [@] 5	(7 ⁻)	≤3.5 ps	В	
4087.1? [@] 8	(8 ⁻)		В	

[†] From a least-squares fit to γ -ray energies. [‡] From (³⁶S, $\alpha p \gamma$) for excited states.

[#] When no J^{π} arguments are given, the assignments are based on $\gamma(\theta)$ data in (³⁶S, $\alpha p\gamma$) and comparison of experimental level structure with shell-model calculations (particularly of 1989Wa09 and 1989Ji01).

[@] Band(A): Yrast negative-parity structure. A multiplet (2^{-} to 5^{-}) is expected from weak coupling of $3/2^{+}$ g.s. of 3^{7} Cl and $7/2^{-}$ g.s. of 43 Ca.

E _i (level)	J_i^π	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
211.62	(1 ⁻)	211.59 <i>11</i>	100	0	2-	(D)	E _γ : weighted average of 211.59 <i>11</i> from ⁴⁰ S $β^-$ decay, 211.60 <i>13</i> from (³⁶ S, <i>α</i> pγ), and 211.6 <i>4</i> from (⁴⁰ Ar.Xγ).
244.03	(3 ⁻)	244.02 8	100	0	2-	(D)	E_{γ} : weighted average of 244.04 8 from ${}^{9}Be({}^{36}S,\alpha p\gamma)$ and 244.0 <i>I</i> from ${}^{208}Pb({}^{40}Ar.X\gamma)$
367.1	(2)	155.5 <i>3</i>	100	211.62	(1-)		E _{γ} : weighted average of 155.5 <i>3</i> from ⁹ Be(³⁶ S, α p γ) and 156 <i>1</i> from ²⁰⁸ Pb(⁴⁰ Ar,X γ).
431.8	(1 to 3 ⁺)	431.58 7	100	0	2-	(D)	E _γ : weighted average of 431.57 7 from ⁴⁰ S β ⁻ decay, 431.63 21 from ⁹ Be(³⁶ S,αpγ), and 431.8 4 from ²⁰⁸ Pb(⁴⁰ Ar,Xγ).
601.28	(4 ⁻)	357.37 14	100 5	244.03	(3 ⁻)	(D)	E_{γ} : weighted average of 357.36 <i>14</i> from ⁹ Be(³⁶ S, αpγ) and 357.4 2 from ²⁰⁸ Pb(⁴⁰ Ar, Xγ).
		601.1 <i>1</i>	9.1 12	0	2-		E _γ : weighted average of 601.1 <i>3</i> from ⁹ Be(³⁶ S, αpγ) and 601.1 <i>I</i> from ²⁰⁸ Pb(⁴⁰ Ar, Xγ). I _γ : weighted average of 8.6 <i>14</i> from ⁹ Be(³⁶ S, arg) and 10.2 from ²⁰⁸ Pb(⁴⁰ Ar, Yr))
680.95	(4 ⁻)	436.90 10	100	244.03	(3 ⁻)	(D)	E_{γ} : weighted average of 436.86 <i>17</i> from ${}^{9}Be({}^{36}S,\alpha p\gamma)$ and 436.9 <i>1</i> from ${}^{208}Pb({}^{40}Ar,X\gamma)$.
839.16	(5 ⁻)	157.8 <i>3</i> 237.92 <i>9</i>	9.7 7 100 <i>3</i>	680.95 601.28	(4 ⁻) (4 ⁻)	(D) (D)	E_{γ} : from ⁹ Be(³⁶ S,αpγ) only. E_{γ} : weighted average of 237.93 <i>9</i> from ⁹ Be(³⁶ S,αpγ) and 237.9 <i>I</i> from ²⁰⁸ Pb(⁴⁰ Ar,Xγ).
		594.9 <i>4</i>	7.4 16	244.03	(3 ⁻)		E_{γ} : from ⁹ Be(³⁶ S, $\alpha p\gamma$) only.
889.5	1+	457.4 [‡] 6	15 [‡] 4	431.8	(1 to 3 ⁺)		
		677.41 [‡] <i>12</i>	100 [‡] 14	211.62	(1 ⁻)		
		889.06 17	40‡ 6	0	2-		E_{γ} : weighted average of 889.04 <i>17</i> from ⁴⁰ S β ⁻ decay and 889.2 5 from ²⁰⁸ Pb(⁴⁰ Ar,Xγ).

 $\gamma(^{40}\text{Cl})$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{40}\text{Cl})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [#]	Comments
1160	(4 ⁻)	563.3 4	100	601.28	(4 ⁻)		E_{γ} : from ²⁰⁸ Pb(⁴⁰ Ar,X γ) only.
1293.3	$(0^{-}, 1, 2)$	403.70 [‡] 12	33 [‡] 4	889.5	1^{+}		
		1081.33 [‡] <i>18</i>	100 [‡] 13	211.62	(1 ⁻)		
		1292.87 [‡] 21	43 [‡] 6	0	2-		
2014.7	(6 ⁻)	1175.4 <i>3</i>	100	839.16	(5 ⁻)		
2194.2	(5)	1513.6 4	100 33	680.95	(4-)	(D)	
		1592.5 4	42 8	601.28	(4 ⁻)		
2307.2	1^{+}	1013.57 [‡] <i>13</i>	100 [‡] 6	1293.3	$(0^{-}, 1, 2)$		
		1874.41 [‡] <i>19</i>	89 [‡] 11	431.8	$(1 \text{ to } 3^+)$		
2413.7	(6)	219.52 13	100	2194.2	(5)	(D)	
2620.4	(7 ⁻)	605.4 6	100 30	2014.7	(6 ⁻)		I _{γ} : I _{γ} (605.4 γ)/I _{γ} (1781.4 γ)=60 <i>16</i> /100 <i>40</i> in (⁴⁰ Ar.X γ).
		1781.4 5	42 15	839.16	(5 ⁻)		
4087.1?	(8-)	1466.7 [@] 6	100	2620.4	(7 ⁻)		

[†] From (³⁶S,αpγ), unless otherwise noted.
[‡] From ⁴⁰S β⁻ decay.
[#] From (³⁶S,αpγ) based on measured γ(θ) consistent with ΔJ=1, dipole (1993Ba62).
[@] Placement of transition in the level scheme is uncertain.

 $^{40}_{17}\text{Cl}_{23}$

Adopted Levels, Gammas

 $^{40}_{17}\text{Cl}_{23}$