Inelastic scattering

	Type	Author	History Citation	Literature Cutoff Date
	Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015
Includes elastic scattering: (HI,H HI= ⁶ Li, ⁷ Li, ⁹ Be, ¹⁰ B, ¹¹ B, ¹² C,	I). ¹³ C, ¹⁴ C, ¹⁴ N, ¹⁶	O, ¹⁷ O, ¹⁸ O,	²⁰ Ne, ²⁸ Si, ³² S, ³⁷ Cl,	⁴⁰ Ar, ⁴⁰ Ca, ⁴⁸ Ca, ⁸⁶ Kr.
 (⁶Li,⁶Li'): 2010Kr06: E=240 MeV. Measured 1982Co12: E=30 MeV. Measured Levels at 0, 3740, 3900, 4490 1977Bo21: E=30 MeV. Measured 1987Va31: E=34 MeV. Also ⁶Lio Additional information 1. (⁶Li,⁶Li): 1989Na02: E=210 MeV. Measured 1980An16: E=28, 32 MeV. 1981Fu04: E=88 MeV. DWBA a 1981Sc16: E=99 MeV. Measured 1977Cu02: E=28, 34 MeV. Dedu 1976Ch27: E=50.6 MeV. Measured 	ed $\sigma(\theta)$, double-fol d $\sigma(\theta)$, $\theta(cm)=9^{\circ}$ -). d $\sigma(\theta)$, coupled-ch (^{40}Ca , $^{40}Ca'$) E=22 ed $\sigma(\theta)$. Ind coupled-channel d $\sigma(\theta)$, optical-model red $\sigma(\theta)$. d $\sigma(\theta)$.	ding model a – 78°; DWB annel analysi 7 MeV. Mea el analysis. lel analysis. parameters;	analysis, deduced B(E2 A double-folding mode is, Hauser-Feshbach ca sured $\sigma(\theta)$, DWBA and $\sigma(\theta)$.	3) for 3737 level. el analysis, deduced deformation lengths. llculations. alysis.
1969Be90: E=20 MeV. Measured	$\sigma(\theta).$			
(⁷ Li, ⁷ Li'): 1985Sa25: E=34 MeV. Measured 1982Ec01: E=45 MeV. Measured (⁷ Li, ⁷ Li): 1980CuZZ, 1977Cu02: E=28, 34 1969Be90: E=20 MeV. Measured	$\sigma(\theta), \ \theta(\text{cm}) = 10^{\circ}$ $\sigma(\theta), \ \theta(\text{cm}) = 12^{\circ}$ MeV. Deduced of $\sigma(\theta).$	– 135°; DW – 80°; doub ptical-model	BA coupled-channel a le folding model. parameters from $\sigma(\theta)$.	nalysis. Levels at 3740, 3900, 4490, 6290.
(⁹ Be, ⁹ Be'): 1980Ec04: E=45, 60 MeV. Meas 5900, 6400, 6940, 7300. (⁹ Be, ⁹ Be): 1980Ec01: E=45, 60 MeV. Measu 1983Ec01: E=35-60 MeV. Measu 1984Fu10: E=158 MeV. Measure 1985Wi18: E=30, 45 MeV. Measure	ured $\sigma(\theta)$; DWBA ured $\sigma(\theta)$. ured $\sigma(\theta)$. ed $\sigma(\theta)$. ured $\sigma(\theta)$.	analysis for	3 ⁻ ,5 ⁻ levels; double f	olding model. Levels at 3730, 3900, 4490,
(¹⁰ B, ¹⁰ B): 1983BoZU: E=31 MeV. Measure 1981GIZY, 1980Gl03: E=46.6 M	d $\sigma(\theta)$. IeV. Measured $\sigma(\theta)$)).		
 (¹¹B, ¹¹B'): 1981Hn01: E=51.5 MeV. Measure 3740, 3900, 4490. Deduced of 1981Hn04: E=40 MeV. Measure (¹¹B, ¹¹B): 1983BoZU: E=32, 68 MeV. Measure 1981GIZY, 1980GI03: E=51.5 M 1980Ma31: E=32 MeV. Measure 	red $\sigma(\theta)$, $\theta(cm)=10$ leformation length d $\sigma(\theta)$, DWBA and sured $\sigma(\theta)$. leV. Measured $\sigma(\theta)$ d $\sigma(\theta)$, DWBA and)° – 60°; DV s. alysis; deduc)). alysis.	VBA coupled-channel, ed deformation lengths	double-folding model analysis. Levels at

Inelastic scattering (continued)

 $(^{12}C, ^{12}C'):$ 1981Bu08: E=1032 MeV. Measured $\sigma(\theta)$, $\theta=4^{\circ} - 16^{\circ}$. Data for g.s. 1986Sa29: E=10-35 MeV. Measured $\sigma(\theta)$. 1980Ku03, 1979Ku02: ${}^{12}C({}^{40}Ca, {}^{40}Ca) E=18-40 \text{ MeV}$; 80-178 MeV. Measured $\sigma(\theta)$. 1978Re06, 1979Re03: E=135-150 MeV; 51 MeV. Measured σ at 180°. Optical-model analysis. 1976MoYU: E=45 MeV. Measured $\sigma(\theta)$. 1972Sc21: E=114 MeV. $(^{13}C, ^{13}C')$: 1977Bo17: E=68 MeV. Measured $\sigma(\theta)$, $\theta=8^{\circ} - 40^{\circ}$; CCBA analysis; levels at 3740, 3900, 4490. Deduced deformation lengths relative to those from (p,p'), normalized to 1.0 for 3900 level. $(^{14}C, ^{14}C')$: 1981Ha23: E=51 MeV. Measured $\sigma(\theta)$; $\theta(cm)=13^{\circ}-53^{\circ}$; DWBA and CCBA analysis. Levels at 3740, 3900, 4480. $(^{14}N, ^{14}N')$: 1978Bu10: E=161 MeV. Measured $\sigma(\theta), \theta(cm)=12^\circ$. Levels at 6900 and 7900. Deduced giant resonances. 1975Wi02: (¹⁴N, ¹⁴N) E=24-54 MeV. Measured $\sigma(\theta)$. $(^{16}O, ^{16}O')$: 1982Re03, 1978Re02: E=60 MeV. Measured $\sigma(\theta)$, $\theta(cm)=10^\circ - 65^\circ$; energy uncertainty ≈ 100 keV; DWBA fits with coupled channels analysis. Levels at 3740, 3900, 4490. **1981All2**: E=51.5, 54 MeV. Measured $\sigma(\theta)$. 1981Ku10: E=50-70 MeV. Measured $\sigma(\theta)$, coupled-channel analysis. 1973Be13: E=60 MeV. Measured $\sigma(\theta)$. $(^{16}O, ^{16}O):$ 1985Me14: E=1503 MeV. 1988Ro01: E=94 MeV. Measured $\sigma(\theta)$. 1979Vi13: E=40-214 MeV. Measured fusion σ . 1979Ku02: E=50 MeV. Also ${}^{16}O({}^{40}Ca, {}^{40}Ca)$ E=80-178 MeV. Measured $\sigma(\theta)$. 1973Ch10: E=47, 49 MeV. 1972Gr25: E=25-45 MeV. Measured $\sigma(\theta)$. 1971Be26: E=20-40 MeV. Measured $\sigma(\theta)$. 1971Or02: E=36-48 MeV. Measured $\sigma(\theta)$. 1969Ec01: E=23-42 MeV. Measured $\sigma(\theta)$. $(^{17}O, ^{17}O')$: 1989AIZQ: E=1428 MeV. Measured σ , θ (cm)=small. Energy uncertainty <400 keV. Levels at 3740, 3900, 4490. (¹⁸O,¹⁸O'): 1982Re14, 1982Re03: E=62.14 MeV. Measured $\sigma(\theta)$, $\theta(cm)=10^{\circ} - 65^{\circ}$; DWBA fits with coupled channels in ⁴⁰Ca and ¹⁸O. Levels at 3740, 3900, 4490. Deduced deformation lengths. 1972Ei07: (¹⁸O, ¹⁸O) E=25-42 MeV. Measured $\sigma(\theta)$. (²⁰Ne,²⁰Ne'): 1978Ng01: E=36-95 MeV. Measured $\sigma(\theta)$; optical-model, DWBA, coupled-channel analysis. 1980Se06: (²⁰Ne, ²⁰Ne) E=151 MeV. Measured $\sigma(\theta)$, optical-model parameters. (²⁸Si,²⁸Si'):

1986Vi02: E=225 MeV. Measured $\sigma(\theta)$, $\theta(cm)=4^{\circ} - 30^{\circ}$; DWBA analysis; energy uncertainty ≈ 400 keV. Unresolved doublet: 3740+3900. Deduced deformation length.

 $(^{32}S,^{32}S')$:

 ${}^{40}_{20}\text{Ca}_{20}$ -3

Inelastic scattering (continued)

1986Bi02: E=100, 120, 151.5 MeV. Measured $\sigma(\theta)$; folding model analysis for 3740 level. 1975Re17: E=100 MeV. Measured $\sigma(\theta)$ for $\theta=20^{\circ} - 60^{\circ}$; DWBA analysis for 3900 level. (32 S, 32 S): 1988Bi06: E=90, 100, 110, 120, 151.5 MeV. Measured $\sigma(\theta)$, folding-model analysis. 1984Ba27: E=100, 120, 151.5 MeV. Measured $\sigma(\theta)$; optical-model analysis. 1989Di06: E=90, 110 MeV. Measured $\sigma(\theta)$. 1977Ri03: E=58-130 MeV. Measured $\sigma(\theta)$.

(³⁷Cl,³⁷Cl'):

1997Wi17: E=97.3, 115.3 MeV. Measured $\sigma(\theta)$.

1990Fe03: (³⁷Cl,³⁷Cl) E=120.5 MeV. Measured $\sigma(\theta)$; folding model and DWBA analysis.

(⁴⁰Ar,⁴⁰Ar'):

1987Fr20: E=1760 MeV. Measured σ , $\theta(lab)=2.5^{\circ}$. Giant resonances at 8000 and 18000. 1978Wa18, 1979Wa06: (⁴⁰Ar,⁴⁰Ar) E=191, 236, 272 MeV. Measured $\sigma(\theta)$, optical-model parameters.

(⁴⁰Ca,⁴⁰Ca'):

1982B104: E=160, 280, 400 MeV. Measured $\sigma(\theta)$, DWBA analysis; FWHM=1.5 MeV. Levels and giant resonances at 3740, 7800, 10700, 14000, 17600, 26000. See also 1981Ro01, 1980Fr02, 1979Tr10, 1977Fr14 from the same group where ${}^{40}Ca({}^{40}Ca,X)$ reaction was studied at E(${}^{40}Ca$)=284 and 400 MeV.

2004Sc07, 1993Sc29: E=50 MeV/nucleon. Measured (⁴⁰Ca)(p) coin; deduced two-phonon double GQR and multi-phonon giant resonance features.

(⁴⁰Ca,⁴⁰Ca):

1977Do02: E=55-120 MeV. Measured $\sigma(\theta)$.

1977Ri03: E=58-130 MeV. Measured $\sigma(\theta)$.

1975Do07: (40 Ca, 40 Ca) E=110-150, 170-200 MeV. Measured σ .

(⁴⁸Ca,⁴⁸Ca):

1990Ti04: E=132, 140 MeV. Measured $\sigma(\theta)$, coupled-channel analysis.

(⁸⁶Kr,⁸⁶Kr'):

1999Ot02: E=5160 MeV. Measured $\sigma(\theta)$, $\theta=1^{\circ} - 6^{\circ}$; fitted elastic and inelastic channels from 13-25 MeV excitation. Energy uncertainty=1400 keV. Deduced E1 and E2 strength distributions.

⁴⁰Ca Levels

E(level)	$J^{\pi^{\dagger}}$	L #	Comments
0	0^{+}	0	
3740	3-	3	 B(E3)=0.0164 17 (same for 3 sets), 0.0171 17 (same for 2 sets), 0.0179 18, 0.0197 20, with different optical model parameter sets (2010Kr06). β₃R=0.49 (⁶Li,1982Co12); 1.15 (¹¹B,1981Hn01); 1.29 18 (²⁸Si,1986Vi02). β₃R(p,p')/β₃R(¹³C,¹³C')=1.3 (1977Bo17).
3900	2^{+}	2	$\beta_2 R = 1.04$ (⁶ Li,1982Co12); 0.44 (¹¹ B,1981Hn01); 1.37 <i>14</i> (²⁸ Si,1986Vi02).
4490	5-	5	$\beta_5 R=0.53$ (⁶ Li,1982Co12); 1.15 (¹¹ B,1981Hn01). $\beta_5 R(p,p')/\beta_5 R(^{13}C,^{13}C')=1.9$ (1977Bo17).
5900			$F_{\mathbf{J}} = \left\{ \mathbf{I}_{\mathbf{J}} = \mathbf{J}_{\mathbf{J}} = $
6290			
6400			
6940			
7300			
7.8×10 ^{3‡} 10			Probably lower excitation of the octupole resonance.
$10.7 \times 10^{3 \ddagger} 10$			

Inelastic scattering (continued)

⁴⁰Ca Levels (continued)

E(level)

Comments

14.0×10³[‡] 10

17.6×10³[‡] 10 GQR; wide structure.

26×10³‡ E(level): wide structure.

[†] From Adopted Levels.

[‡] Giant resonance. [#] Based on adopted J^{π} .