⁴³Cr β^+ 3p decay (21.2 ms) 2012Au08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

Parent: ⁴³Cr: E=0; $J^{\pi}=(3/2^+)$; $T_{1/2}=21.2$ ms 7; $Q(\beta^+3p)=10679$ SY; $\%\beta^+3p$ decay=0.18 13

 43 Cr-Q(β^+ 3p): 10679 400 (syst), deduced by compiler from mass excesses of 43 Cr, 40 Ca and proton in 2012Wa38.

⁴³Cr-J^{π},T_{1/2}: From Adopted Levels of ⁴³Cr.

⁴³Cr-%β⁺3p decay: From %β⁺3p=0.13 +18-8 deduced by 2012Au08 from relative β⁺3p branching of 0.14% +19-9 (2012Au08) and total proton branching of 91.0% 23, weighted average of 92.5% 28 (2007Do17) and 88% 4 (2011Po01).

2012Au08: ⁴³Cr nuclei were produced in the reaction Ni(⁵⁸Ni,X) at the LISE3 separator at GANIL. ⁴³Cr ions were separated, identified and then implanted onto the time projection chamber (TPC). Charged particles were detected in a two-dimensional strip detector combined with drift-time analysis to reconstruct the tracks of the particles in three dimensions. Characterization of the TCP was done with the β^+ p decay of ⁵²Ni with reference to proton energies and branching ratios. Measured energy loss, decay event counts, angular correlation between two protons. Deduced branching ratio. Recorded events in this study: 180 events for ⁴³Cr β^+ 2p emission, and three events for β^+ 3p emission.

⁴⁰Ca Levels

 $\frac{\mathrm{E(level)}}{\mathrm{0}} \quad \frac{\mathrm{J}^{\pi}}{\mathrm{0}^{+}}$