⁴¹Ti εp decay (80.4 ms) 1997Ho12,1998Li46,1998Bh12

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015	

Parent: ⁴¹Ti: E=0; $J^{\pi}=3/2^+$; $T_{1/2}=80.4$ ms 9; Q(εp)=11860 28; % εp decay \approx 100.0

⁴¹Ti-J^{π},T_{1/2}: From Adopted Levels of ⁴¹Ti.

⁴¹Ti-Q(εp): From 2012Wa38.

⁴¹Ti decays to ⁴⁰Ca by εp ($\approx 100\%$).

1997Ho12: ⁴¹Ti ions were produced by fusion reaction of E=40Mev ³He beam on a 5 mg/cm² natural calcium target at the IGISOL facility. Reaction products were mass-separated and implanted into 30 μ g/cm² carbon foil. Charged particles were detected with a telescope (FWHM<30 keV) of a gaseous ΔE detector (proportional counter) and a E detector (silicon surface-barrier detector). Another setup consisted of a plastic scintillator for beta detection, an ion-implanted silicon detector for beta and proton, a HPGe detector for γ rays. Measured E(p), I(p), p γ -coin, p β -coin. Deduced levels. Report 6 proton groups from ⁴¹Ti decay. 1998Li46: ⁴¹Ti ions were produced by fragmentation of E=500 MeV/nucleon ⁵⁸Ni beam from the heavy-ion synchrotron SIS of

GSI on a 4 g/cm² ⁹Be target. Fragments were separated by the FRS separator, identified by energy loss in an ionization chamber (MUSIC) and mass-to-charge ratio from the time-of-flight (TOF) and the magnetic rigidity of the FRS and implanted into a stack of silicon detectors for detecting β -delayed protons; γ rays were detected with an array of 14 large-volume Crystal Ball NaI detectors. Measured E(p), I(p), p γ -coin, decay-time distribution. Deduced levels, parent T_{1/2}. Report 37 proton groups from ⁴¹Ti decay.

1998Bh12: ⁴¹Ti ions were produced at GANIL by fragmentation of a 82.6 MeV/nucleon ⁵⁰Cr beam on a 272.4 mg/cm² nickel target. Fragments were separated and selected by the LISE3 spectrometer and then implanted into a stack of five Si surface-barrier detectors. γ rays were detected with five HPGe detectors. Measured E(p), I(p), E γ , I γ , p γ -coin, p β -coin, decay time distribution. Deduced levels, ⁴¹Ti half-life. Report 29 proton groups from ⁴¹Ti decay.

Other main references for measurement of E(p), I(p) from ⁴¹Ti decay: 1985Zh05 (6 proton groups), 1974Se11 (17 proton groups), 1966Po12 (17 proton groups), 1964Re08 (6 proton groups).

Others: 2015Sh16, 1998Jo20, 1977Ce05, 1976Sz04, 1973Ha77, 1973Go06. Additional information 1.

⁴⁰Ca Levels

E(level) [†]	J ^{π‡}	Comments
0	0^{+}	
3353	0^{+}	
3737	3-	
3904	2^{+}	E(level): from 1997Ho12.

[†] Rounded values from Adopted Levels.

[‡] From Adopted Levels.

Delayed Protons (⁴⁰Ca)

E(p) [†]	E(⁴⁰ Ca)	I(p) ^{‡<i>a</i>}	E(⁴¹ Sc) [#]	E(p) [†]	E(⁴⁰ Ca)	I(p) [‡] <i>a</i>	E(⁴¹ Sc) [#]
754 12	3904	0.29 13	5774	2063 ^{&b} 30	3737	1.1 2	6938
986 <i>2</i>	0	5.6 9	2095	2271 3	0	5.0 7	3413
1249 ^{@b} 15	3737	1.05 19	6102	2414 3	0	3.4 <i>3</i>	3560
1249 ^{@b} 15	3904	1.05 19	6270	2.54×10 ³ ^b 13	0	0.62 12	3690
1542 2	0	4.2 13	2666	2656 7	0	1.5 3	3808
1587 <i>10</i>	0	0.48 23	2712	2804 8	0	0.89 20	3960
1857 28	3904	0.8 3	6893	3083 4	0	15.8 5	4246
1977 ^{@b} 10	3353	0.56 14	6465	3152 19	0	0.80 13	4317
1977 ^{@b} 10	3904	0.56 14	7021	3343 10	0	0.60 7	4512

Continued on next page (footnotes at end of table)

			⁴¹ Ti εp de	cay (80.4 ms) 1997H	1997Ho12,1998Li46,1998Bh12 (continued)			
				Delayed Protons (continued)					
E(p) [†]	E(⁴⁰ Ca)	I(p) ^{‡a}	E(⁴¹ Sc) [#]	E(p) [†]	E(⁴⁰ Ca)	I(p) ^{‡a}	$E(^{41}Sc)^{\#}$		
3483 9	0	0.65 7	4656	4876 15	0	0.84 9	6084		
3600 5	0	2.15 25	4776	4944 11	0	0.76 13	6154		
3691 4	0	3.7 5	4869	5157 14	0	0.40 11	6372		
3749 5	0	7.4 5	4929	5219 40	0	0.65 12	6435		
3832 8	0	0.62 5	5014	5337 ^b 23	0	0.37 20	6557		
3890 17	0	0.43 8	5073	5441 40	0	0.60 12	6673		
4187 4	0	3.72 12	5378	5601 15	0	0.065 7	6827		
4307 11	0	0.34 10	5501	5718 14	0	0.094 8	6947		
4385 6	0	1.69 12	5581	5790 ^b 27	0	0.56 14	7021		
4570 7	0	0.88 13	5767	5947 19	0	0.102 10	7182		
4638 4	0	5.3 4	5840	6121 19	0	0.072 7	7360		
4683 10	0	1.06 16	5886	6371 <i>3</i> 8	0	0.050 15	7617		
4735 <i>3</i>	0	25.0 10	5940	6650 50	0	0.050 5	7903		
4829 10	0	0.8 <i>3</i>	6036	6725 60	0	0.07 2	7980		

[†] E(p)(lab) values are from a weighted average of 1998Bh12, 1998Li46, 1997Ho12 and 1974Se11, except where noted.

[‡] From weighted averages of 1998Ei46, 1998Bh12, 1997Ho12, 1985Zh05, and 1974Se11. [#] From ⁴¹Ti ε decay (80.4 ms).

[@] 1249 and 1977 proton groups are doubly placed.

[&] This group is not reported by 1997Ho12.

^{*a*} For absolute intensity per 100 decays, multiply by ≈ 1.0 . ^{*b*} Placement of transition in the level scheme is uncertain.

⁴¹Ti εp decay (80.4 ms) 1997Ho12,1998Li46,1998Bh12

Decay Scheme

I(p) Intensities: I(p) per 100 parent decays

 $^{40}_{20}Ca_{20}$

E(p)

986

1542

1587

2271

2414

2540

2656

2804

3083

3152

3343

3483

3600

3691

3749

3832

3890

4187

4307

4385

4570

4638

4683

 0^+

I(p)

≈5.6

 ≈ 4.2

 ≈ 0.48

 ≈ 5.0

≈3.4

 ≈ 0.62

 ≈ 1.5

 ≈ 0.89

 $\approx \! 16$

 ≈ 0.8

 ≈ 0.6

 ≈ 0.65

 ≈ 2.2

≈3.7

≈7.4

 ≈ 0.62

 ≈ 0.43

 ≈ 3.7

≈0.34

 ≈ 1.7

 ≈ 0.88

 ≈ 5.3

 ≈ 1.1

⁴¹Ti εp decay (80.4 ms) 1997Ho12,1998Li46,1998Bh12

Decay Scheme (continued)

I(p) Intensities: I(p) per 100 parent decays

