40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015

Parent: ⁴⁰Cl: E=0; $J^{\pi}=2^{-}$; $T_{1/2}=1.35 \text{ min } 3$; $Q(\beta^{-})=7482 \ 32$; $\%\beta^{-}$ decay=100.0

⁴⁰Cl-J^{π},T_{1/2}: From Adopted Levels of ⁴⁰Cl.

⁴⁰Cl-Q(β^{-}): From 2012Wa38.

1972K106 (also 1973K102,1981HuZT): ⁴⁰Cl ions were produced via ⁴⁰Ar(n,p) reaction with E=14 MeV neutron beam on pure natural argon target. γ rays were detected with a Ge(Li) detector (FWHM=4 keV at 1.33 MeV) and a NaI(Tl) detector. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , γ -ray branching ratios.

1970Ke12: ⁴⁰Cl sources were prepared via the ⁴⁰Ar(n,p) reaction with E=14.9 MeV neutron produced from the University of Kentucky neutron generator. γ rays were detected with Ge(Li) detectors and NaI(Tl) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, decay curve. Deduced levels, J, π , γ -ray branching ratios, parent T_{1/2}.

Others:

1989Mi03: Measured E β , $\beta\gamma$ -coin. Deduced mass excess.

1968Hu07, 1965Gr03, 1956Mo39: Measured Ey, Iy. Deduced levels.

Thesis (M.S.) by E.L. Robinson (Purdue, 1958). $E\gamma$, $I\gamma$ data and level scheme from this work are quoted by 1970Ke12. This thesis was not available to the present evaluator.

E(level) [†]	Jπ &	T _{1/2}	Comments
0	0^{+}	stable	
1460.78 5	2+		
2120.82 19	0^{+}		
2524.03 12	2+		
2892.70 22	4+		
3207.89 14	2+		
3511.18 25	2+		
3680.53 14	3-		
3918.82 13	21		
3941.91?+ 20	-		
4082.60 17	3-		Additional information 1.
4178.9?+ 3	(2)		
4301.01 23	$(3)^{-}$		
4324.5 3	21		
4359.5?* 9			
4481.0? [‡] 3	1-		
4562.28 17	$(1,3)^{-}$		
4582.0? [‡] 8	(3 ⁻)		
4737.8? [‡] 4			
4769.0 <i>3</i>	1-		
4943.3? [‡] 6			
5165.7 7	$(2)^{+}$		
5269.6 <i>3</i>	$(1^{-}, 3^{-})$		
5310.0? [#] 10	(2^{+})		
5400.5 8	1-		
5609.4 8	(1,2,3)		
5629.4? [#] 10			
5717.8 10			
5880.1 4	1-		
5905.9 7	(1-)		
5950.5 10	(1,2)		

${}^{40}\text{Cl}\,\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12 (continued)

⁴⁰Ar Levels (continued)

E(level) [†]	J ^π &	Comments
6053.6 8	1(-)	
6133.5? [@] 10		
6208.5 8	(1,2)	
6276.7? 10	(1 ⁻ ,2 ⁻ ,3 ⁻)	E(level): this level is constructed by 1972K106 only based on a 1333-keV transition to a level at 4943 which is considered as improbable by 1983Bi08 in $(\alpha, p\gamma)$. Therefore, the evaluator has considered this level as questionable as well.
6338.7 11	$1^{(-)}$	-
6476.1 8	$1^{(-)}$	
6651.7? 8		

[†] From a least-squares fit to γ -ray energies.

[±] Level considered as improbable based on results of $(\alpha, p\gamma)$ study of 1983Bi08.

[#] Level considered as improbable since the decay mode is very different from that in $(\alpha, p\gamma)$ (1983Bi08) from a level near the same energy.

[@] From 1981HuZT only. [&] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
$(8.3 \times 10^{2\#} 3)$	6651.7?	0.49 17	4.8 2	av Eβ=301 14
$(1.01 \times 10^3 3)$	6476.1	0.16 3	5.6 1	av E β =376 14
$(1.14 \times 10^3 \ 3)$	6338.7	0.26 8	5.6 2	av E β =436 15
$(1.21 \times 10^{3\#} 3)$	6276.7?	0.32 6	5.6 1	av E β =464 15
$(1.27 \times 10^3 \ 3)$	6208.5	0.041 25	6.6 <i>3</i>	av E β =494 15
$(1.35 \times 10^3 \ 3)$	6133.5?	≈0.04	≈6.7	av E β =527 15
				$I\beta^-$: from 1981HuZT.
$(1.43 \times 10^3 3)$	6053.6	0.32 6	5.9 <i>1</i>	av E β =563 15
$(1.53 \times 10^3 3)$	5950.5	0.041 25	6.9 <i>3</i>	av E β =610 15
$(1.58 \times 10^3 3)$	5905.9	0.65 9	5.8 1	av E β =631 15
$(1.60 \times 10^3 3)$	5880.1	5.2 5	4.9 <i>1</i>	av E β =642 15
$(1.76 \times 10^3 3)$	5717.8	0.08 4	6.9 2	av E β =717 15
$(1.85 \times 10^{3\#} 3)$	5629.4?	0.08 4	7.0 2	av E β =758 15
$(1.87 \times 10^3 \ 3)$	5609.4	0.41 19	6.3 2	av E β =767 15
$(2.08 \times 10^3 \ 3)$	5400.5	0.16 7	6.9 2	av E β =865 15
$(2.17 \times 10^{3\#} 3)$	5310.0?	0.16 9	7.0 <i>3</i>	av E β =907 15
$(2.21 \times 10^3 \ 3)$	5269.6	2.1 3	5.9 <i>1</i>	av E β =926 15
$(2.32 \times 10^3 \ 3)$	5165.7	0.9 1	6.3 1	av E β =975 16
$(2.71 \times 10^3 \ 3)$	4769.0	0.49 9	6.9 <i>1</i>	av E β =1164 <i>16</i>
$(2.74 \times 10^{3\#} 3)$	4737.8?	0.41 9	7.0 1	av E β =1179 <i>16</i>
$(2.90 \times 10^{3\#} 3)$	4582.0?	0.17 7	7.5 2	av Eβ=1254 <i>16</i>
$(2.92 \times 10^3 \ 3)$	4562.28	22.6 21	5.4 1	av E β =1263 <i>16</i>
				E(decay): 2729 145 (1989Mi03) from $\beta(3101\gamma)$.
$(3.00 \times 10^{3\#} 3)$	4481.0?	0.24 6	7.4 1	av E β =1302 <i>16</i>
$(3.12 \times 10^{3\#} 3)$	4359.5?	0.24 8	7.5 2	av E β =1360 16
$(3.16 \times 10^3 \ 3)$	4324.5	0.16 5	7.7 2	av Eβ=1377 <i>16</i>
$(3.18 \times 10^3 \ 3)$	4301.01	27 5	5.5 1	av Eβ=1389 <i>16</i>
				E(decay): 3086 75 (1989Mi03) from β (2840 γ).

Continued on next page (footnotes at end of table)

$^{40}\mathrm{Cl}\,\beta^-$ decay (1.35 min) 1972Kl06,1970Ke12 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(3.30×10 ³ [#] 3)	4178.9?	0.24 6	7.6 1	av E β =1448 <i>16</i>
$(3.40 \times 10^3 \ 3)$	4082.60	13.8 15	5.9 1	av E β =1494 <i>16</i>
- 11				E(decay): $3070 \ 100 \ (1989Mi03)$ from $\beta(2622\gamma)$.
$(3.54 \times 10^{3\#} 3)$	3941.91?	0.16 5	7.9 2	av E β =1562 16
$(3.56 \times 10^3 \ 3)$	3918.82	5.5 12	6.4 1	av E β =1573 16
$(3.80 \times 10^3 \ 3)$	3680.53	4.6 11	6.6 1	av Eβ=1689 <i>16</i>
$(3.97 \times 10^3 \ 3)$	3511.18	0.9 2	7.4 1	av E β =1771 16
$(4.27 \times 10^3 \ 3)$	3207.89	2.1 4	7.2 1	av E β =1919 16
$(4.59 \times 10^3 \ 3)$	2892.70	0.7 2	9.5^{1u} 1	av E β =2085 16
$(4.96 \times 10^3 \ 3)$	2524.03	1.7 5	7.5 1	av E β =2253 16
$(6.02 \times 10^{3\#} 3)$	1460.78	44	>7.2	av Eβ=2774 <i>16</i>
$(7.48 \times 10^3 \ 3)$	0	<9	>9.8 ¹	av E β =3500 16
				E(decay): 7390 118 (1989Mi03).
				$I\beta^-$: The only available experimental value is 9% from E.L. Robinson (M.S. thesis,
				Purdue, 1958). This value has been quoted in several papers
				(1989Mi03,1981HuZT,1972Kl06,1970Ke12) and in Endt's compilations.
				1970Ke12 quoted I β =9-18%, again based on Robinson's data, suggesting equal
				feedings to the ground state and the first excited state. The singles β spectrum
				of 1989Mi03 does show that there is a direct feeding to the ground state, but in
				the opinion of the evaluator, precise feeding is not known. log $f^{lu}t > 8.5$ expected
				for first-forbidden unique transition allows up to 100% feeding.
				· · · · ·

[†] Deduced by evaluator from imbalance of γ-ray intensities at each level using the GTOL program.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

 $\gamma(^{40}{\rm Ar})$

I γ normalization: From $\Sigma(I\gamma$ to g.s.)=95.5 45, obtained by assuming β^- feeding to g.s. is <9% (see comments for g.s. β^- branching ratio) which is equivalent to 4.5% 45. Singles β^- spectrum of 1989Mi03 shows some g.s feeding. But its precise value is unknown.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.	δ^{c}	$\alpha^{\boldsymbol{b}}$	Comments
222.5 ^f 5	0.20 6	4582.0?	(3^{-})	4359.5?					
239.0 [#] 3	0.28 [#] 13	3918.82	2+	3680.53	3-	[E1]		1.13×10^{-3}	α (K)=0.001040 <i>15</i> ; α (L)=8.51×10 ⁻⁵ <i>13</i> ; α (M)=8.28×10 ⁻⁶ <i>12</i>
261.2 [#] 7	1.0 [#] 1	4562.28	$(1,3)^{-}$	4301.01	$(3)^{-}$				
270 [‡]		5880.1	1-	5609.4	(1.2.3)				
303.0 6	0.07 4	3511.18	2^{+}	3207.89	2+				
315.0 5	0.03 1	3207.89	2^{+}	2892.70	4+	[E2]		0.00249	$\alpha(K)=0.00229 4; \alpha(L)=0.000189 3; \alpha(M)=1.83\times 10^{-5} 3$
361.3 f 5	0.09 2	4943.3?		4582.0?	(3-)				
369.0 6	0.02 1	2892.70	4+	2524.03	2+	[E2]		1.41×10^{-3}	α (K)=0.001291 20; α (L)=0.0001065 17; α (M)=1.035×10 ⁻⁵ 16
381.0 ^f 5	0.10 4	4943.3?		4562.28	$(1,3)^{-}$				
472.0 4	0.3 1	3680.53	3-	3207.89	2+	[E1]		1.64×10^{-4}	α (K)=0.0001501 22; α (L)=1.229×10 ⁻⁵ 18; α (M)=1.198×10 ⁻⁶ 17
479.9 [#] 4	1.1 [#] 3	4562.28	$(1,3)^{-}$	4082.60	3-				
621.1 ^e 6	<0.3 ^e	3511.18	2+	2892.70	4+	[E2]		2.51×10^{-4}	$\alpha(K)=0.000230 \ 4; \ \alpha(L)=1.89\times10^{-5} \ 3; \ \alpha(M)=1.84\times10^{-6} \ 3$
621.1 ^e 6	<0.3 ^e	4301.01	$(3)^{-}$	3680.53	3-				
643.6 [#] 3	8.3 [#] 6	4562.28	$(1,3)^{-}$	3918.82	2+				
660.1 [#] 4	3.1 [#] 3	2120.82	0+	1460.78	2+	[E2]		2.09×10^{-4}	α (K)=0.000192 3; α (L)=1.575×10 ⁻⁵ 23; α (M)=1.534×10 ⁻⁶ 22
788.1 [#] 3	1.0 [#] 1	3680.53	3-	2892.70	4+	[E1]			
881.3 [#] 3	3.2 [#] 3	4562.28	$(1,3)^{-}$	3680.53	3-				
1042.3 ^{<i>f</i>} 3	0.6.2	6651.7?		5609.4	(1.2.3)				
1051.1 5	0.6 2	4562.28	$(1,3)^{-}$	3511.18	2+				
1063.1 [#] 2	2.9 [#] 3	2524.03	2+	1460.78	2+	M1+E2	-0.41 +6-13		
1087.6 4	0.10 5	3207.89	2+	2120.82	0^{+}	[E2]			
1092.9 [#] 8	0.33 [#] 7	4301.01	$(3)^{-}$	3207.89	2+	[E1]			
1156.2 4	0.6 1	3680.53	3-	2524.03	2+	[E1]		5.43×10 ⁻⁵ 8	α =5.43×10 ⁻⁵ 8; α (K)=2.07×10 ⁻⁵ 3; α (L)=1.690×10 ⁻⁶ 24; α (M)=1.649×10 ⁻⁷ 24
									α (IPF)=3.18×10 ⁻⁵ 5
1186.7 4	0.9 1	5269.6	$(1^-, 3^-)$	4082.60	3-				
1317.2.3	0.50.6	2880.1	1	4362.28	(1,3)				

4

From ENSDF

 $^{40}_{18}{\rm Ar}_{22}$ -4

				⁴⁰ Cl /	³⁻ deca	ay (1.35 min)	1972Kl06,19	70Ke12 (continu	ed)			
γ ⁽⁴⁰ Ar) (continued)												
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	δ^{c}	$\alpha^{\boldsymbol{b}}$	Comments			
1333.4 ^{<i>f</i>} 8	0.40 7	6276.7?	(1 ⁻ ,2 ⁻ ,3 ⁻)	4943.3?					E_{γ} : this transition connects to a level at 4943 which is considered as improbable by 1983Bi08 in (<i>α</i> ,pγ). Therefore, the evaluator has considered it as questionable as well.			
1353.7 <i>5</i> 1394.7 <i>3</i>	0.25 <i>10</i> 1.5 <i>2</i>	4562.28 3918.82	$(1,3)^{-}$ 2 ⁺	3207.89 2524.03	2^+ 2^+				-			
1432.1 [#] 4	2.0 [#] 2	2892.70	4+	1460.78	2+	E2		9.45×10 ⁻⁵ 14	$\alpha = 9.45 \times 10^{-5} \ 14; \ \alpha(\text{K}) = 2.74 \times 10^{-5} \ 4;$ $\alpha(\text{L}) = 2.24 \times 10^{-6} \ 4; \ \alpha(\text{M}) = 2.19 \times 10^{-7} \ 3$ $\alpha(\text{IPF}) = 6.46 \times 10^{-5} \ 10$			
1460.73 [#] 5	100 [#]	1460.78	2+	0	0^+	E2		1.03×10^{-4}	$\alpha(K)=2.63\times10^{-5} 4; \ \alpha(L)=2.15\times10^{-6} 3; \\ \alpha(M)=2.10\times10^{-7} 3 \\ \alpha(IPE)=7.41\times10^{-5} 11$			
1558.7 4	0.60 7	4082.60	3-	2524.03	2+	[E1]		3.25×10 ⁻⁴	$\alpha(\text{II}\)=7.41\times10^{-5}\ 11^{-5}\ \alpha(\text{L})=1.017\times10^{-6}\ 15;$ $\alpha(\text{M})=9.93\times10^{-8}\ 14$ $\alpha(\text{IPF})=0.000311\ 5$			
1579.9 8	0.4 1	5880.1	1-	4301.01	(3)-							
1589.0 [#] 3	1.2 [#] 2	5269.6	(1 ⁻ ,3 ⁻)	3680.53	3-							
1746.5 [#] 2	3.3 [#] 3	3207.89	2+	1460.78	2+	M1+E2	+0.11 7	1.65×10 ⁻⁴ 3	$\alpha(K)=1.633\times10^{-5} \ 24; \ \alpha(L)=1.334\times10^{-6} \ 19; \\ \alpha(M)=1.302\times10^{-7} \ 19 \\ \alpha(IPF)=0.0001476 \ 23$			
1776.9 8	0.020 3	4301.01	(3)-	2524.03	2+	[E1]		4.91×10 ⁻⁴	$\alpha(K)=1.017 \times 10^{-5} \ 15; \ \alpha(L)=8.30 \times 10^{-7} \ 12; \ \alpha(M)=8.10 \times 10^{-8} \ 12 \ \alpha(IPF)=0.000480 \ 7$			
1797.8 [#] 2	2.7 [#] 4	3918.82	2+	2120.82	0^+	[E2]		2.36×10 ⁻⁴	$\alpha(K)=1.743\times10^{-5} 25; \ \alpha(L)=1.424\times10^{-6} 20; \ \alpha(M)=1.390\times10^{-7} 20 \ \alpha(IPF)=0.000217 3$			
2050.5 4	1.3 2	3511.18	2+	1460.78	2+	M1(+E2)	-0.05 11	2.82×10 ⁻⁴ 5	$\alpha(\text{II} 1) = 0.000217.5$ $\alpha(\text{K}) = 1.247 \times 10^{-5} I8; \ \alpha(\text{L}) = 1.018 \times 10^{-6} I5;$ $\alpha(\text{M}) = 9.94 \times 10^{-8} I4$ $\alpha(\text{IPF}) = 0.000269 4$			
2063.0 10	0.5 2	5269.6	(1-,3-)	3207.89	2^{+}							
2220.0 [#] 2	8.6 [#] 12	3680.53	3-	1460.78	2+	E1(+M2)	-0.07 +5-11	7.97×10 ⁻⁴ 19	$\alpha(K)=7.4\times10^{-6} 3; \alpha(L)=6.04\times10^{-7} 24;$ $\alpha(M)=5.89\times10^{-8} 23$ $\alpha(IPF)=0.000789 20$			
2457.7 [#] 4	5.8 [#] 10	3918.82	2+	1460.78	2+	M1+E2		0.00050 5	$\alpha(K)=9.6\times10^{-6} 4; \ \alpha(L)=7.9\times10^{-7} 3; \alpha(M)=7.7\times10^{-8} 3 \alpha(IPF)=0.00049 5 \delta: <-0.3 \text{ or>+6 from } (p.p'\gamma).$			
2524.1 [#] 2	2.5 [#] 3	2524.03	2+	0	0+	E2		5.79×10 ⁻⁴	$\alpha(K)=9.52\times10^{-6} \ 14; \ \alpha(L)=7.77\times10^{-7} \ 11; \\ \alpha(M)=7.58\times10^{-8} \ 11 \\ \alpha(IPF)=0.000569 \ 8$			

S

$^{40}_{18}\mathrm{Ar}_{22}$ -5

From ENSDF

 $^{40}_{18}{
m Ar}_{22}$ -5

L

40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12 (continued)

$\gamma(^{40}\text{Ar})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_{f}^{π}	Mult.	α b	Comments
2621.7 [#] 2	18.1 [#] 16	4082.60	3-	1460.78	2+	[E1]	1.04×10^{-3}	$\alpha(K)=5.86\times10^{-6} \ 9; \ \alpha(L)=4.78\times10^{-7} \ 7; \ \alpha(M)=4.66\times10^{-8} \ 7 \ \alpha(IPF)=0.001034 \ 15$
2840.1 [#] 3	34 ^{#} 5	4301.01	(3)-	1460.78	2+	[E1]	1.17×10^{-3}	$\alpha(K)=5.27\times10^{-6} \ 8; \ \alpha(L)=4.30\times10^{-7} \ 6; \ \alpha(M)=4.19\times10^{-8} \ 6 \ \alpha(IPF)=0.001162 \ 17$
3101.7 [#] 4	14.0 ^{&} 20	4562.28	(1,3)-	1460.78	2+			
3193.7 10	0.10 5	5717.8		2524.03	2^{+}			· · · · ·
3208.2 3	0.6 1	3207.89	2+	0	0+	[E2]	8.79×10^{-4}	$\alpha(K)=6.47\times10^{-6} \ 9; \ \alpha(L)=5.28\times10^{-7} \ 8; \ \alpha(M)=5.15\times10^{-8} \ 8 \ \alpha(IPF)=0.000872 \ 13$
3356.6 8	0.4 1	5880.1	1-	2524.03	2^{+}		2	
3511.0 5	0.20 8	3511.18	2+	0	0^{+}	[E2]	1.00×10^{-3}	$\alpha(K)=5.63 \times 10^{-6} \ 8; \ \alpha(L)=4.60 \times 10^{-7} \ 7; \ \alpha(M)=4.49 \times 10^{-8} \ 7 \ \alpha(IPF)=0.000996 \ 14$
3704.6 8	1.0 1	5165.7	$(2)^{+}$	1460.78	2+			
3759.9 10	0.10 3	5880.1	1-	2120.82	0^{+}			
3784.9 6	0.8 1	5905.9	(1^{-})	2120.82	0^{+}			,
3918.6 [#] 2	4.8 [#] 5	3918.82	2+	0	0^{+}	E2	1.15×10^{-3}	$\alpha(K)=4.79\times10^{-6}$ 7; $\alpha(L)=3.90\times10^{-7}$ 6; $\alpha(M)=3.81\times10^{-8}$ 6 $\alpha(IPF)=0.001141$ 16
								It is seen from the gamma spectrum in 1972Kl06 that the 3919 single-escape peak+full-energy peak is much stronger than the 2458 peak. It is possible that the intensity of 3919 single-escape peak is not taken into account for the total intensity of the 3919 gamma-ray by 1972Kl06.
$3941.7^{@f} 2$	0.20.5	3941.91?		0	0^{+}			
4082.1 8	0.30 6	4082.60	3-	0	0+	[E3]	9.21×10 ⁻⁴	$\alpha(K) = 5.95 \times 10^{-6}$ 9; $\alpha(L) = 4.85 \times 10^{-7}$ 7; $\alpha(M) = 4.74 \times 10^{-8}$ 7 $\alpha(PF) = 0.000914$ 13
4147.7 10	1.1 <i>I</i>	5609.4	(1.2.3)	1460.78	2^{+}			
$4178.7^{@f}$ 3	0.30.7	4178 9?	())-)	0	0^{+}			
4324.2 3	0.20 5	4324.5	2+	0	0^{+}	[E2]	1.29×10^{-3}	$\alpha(K)=4.15\times10^{-6} 6$; $\alpha(L)=3.38\times10^{-7} 5$; $\alpha(M)=3.30\times10^{-8} 5$ $\alpha(IPF)=0.001285 18$
4357.6 [@] <i>f</i> 3	0.50 7	4359.5?		0	0^{+}			
4480.7 [@] f 3	0.30 7	4481.0?	1-	0	0^{+}	D		
4580.1 ^{@f} 5	0.10 4	4582.0?	(3 ⁻)	0	0^{+}	[E3]	1.07×10^{-3}	α (K)=4.93×10 ⁻⁶ 7; α (L)=4.02×10 ⁻⁷ 6; α (M)=3.93×10 ⁻⁸ 6 α (IPF)=0.001064 15
$4737.5^{@f} 4$	0.5 1	4737.8?		0	0^{+}			
4768.7 3	0.6 1	4769.0	1-	Ő	0^{+}			
5165.5 10	0.10 5	5165.7	$(2)^{+}$	0	0^{+}			
5309.6 ^f 10	0.2 1	5310.0?	(2^+)	0	0^{+}			
5400.1 8	0.20 8	5400.5	1-	Õ	0^{+}			
5629 0 10	0 10 5	5629 42		0 0	0^{+}			
5879 6 [#] 12	5.0 [#] 5	5880 1	1-	ů N	0+			
5950 0 10	0.05.3	5950.1	(1 2)	0	0+			
6053 1 8	0.40 6	6053.6	$1^{(-)}$	0	0+			
0000.10	0.10 0	0000.0		0	5			

6

 $^{40}_{18}\mathrm{Ar}_{22}\text{-}6$

$\gamma(^{40}\text{Ar})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger d}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
6133 [‡] <i>f</i>	≈0.05 ^{<i>a</i>}	6133.5?		0	0^{+}
6208.0 8	0.05 3	6208.5	(1,2)	0	0^+
6338.2 [#] 11	0.32 [#] 9	6338.7	$1^{(-)}$	0	0^+
6475.5 8	0.20 3	6476.1	$1^{(-)}$	0	0^+

[†] From 1972K106, unless otherwise noted.

[‡] From 1981HuZT only, intensity is not available.

[#] Weighted average from 1972K106 and 1970Ke12. [@] Placement questioned by 1983Bi08 based on their $(\alpha, p\gamma)$ study.

[&] From 1972K106, obtained in indirect method. Other: 5 3 in 1970Ke12.

^{*a*} From β feeding quoted by 1981HuZT.

^b Additional information 2.

^c Additional information 3.

^d For absolute intensity per 100 decays, multiply by 0.81 4.

^e Multiply placed with undivided intensity.

^f Placement of transition in the level scheme is uncertain.

40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12

40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12

Decay Scheme (continued)

40 Cl β^- decay (1.35 min) 1972Kl06,1970Ke12

Decay Scheme (continued)

