³⁸Ar(t,p) **1975Fl08**

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 140, 1 (2017)	30-Sep-2015					

Target ³⁸Ar $J^{\pi}(g.s.)=0^+$.

1975Fl08,1973Ca13: E=20 MeV triton beam was produced from the Los Alamos three-stage Van de Graaff facility with a typical current of 300 nA. Target was enriched argon gas (95% in ³⁸Ar) with an effective thickness of $\approx 60 \ \mu g/cm^2$. Reaction products were momentum analyzed with a broad-range spectrograph (FHWM \approx 35 keV) and detected in nuclear emulsions. Measured $\sigma(E_p, \theta)$. Deduced levels, J, π , enhancement factors, L-transfer from DWBA analysis.

All data are from 1975Fl08, unless otherwise noted.

Measured absolute cross sections (uncertainty=15%) (1975Fl08)							
Level	$d\sigma/d\Omega$ (main mb/sr	x) θ	Level	$d\sigma/d\Omega$ mb/sr	(max) θ		
0	0.28	20.0	5298	0.086	12.5		
1461	0.54	12.5	5393	0.040	35.0		
2121	0.014	12.5	5454	0.074	12.5		
2524	0.006	12.5	5500	0.040	20.0		
2892	0.33	20.0	5671	0.056	20.0		
3207	0.32	12.5	5835	0.18	20.0		
3468	0.068	42.5	5883	0.42	12.5		
3507	0.077	12.5	6140	0.032	27.5		
3681	0.18	12.5	6305	0.092	12.5		
3926	0.18	12.5	6470	0.10	12.5		
4053	0.015	27.5	6670	0.018	35.0		
4092	weak		6760	0.20	20.0		
4310	0.17	12.5	6835	0.077	12.5		
4430	0.39	20.0	7070	0.015	35.0		
4495	0.021	20.0	7160	0.061	12.5		
4665	0.015	27.5	7300	0.089	12.5		
4798	0.071	12.5	7495	0.17	12.5		
4870	0.024	20.0	7640	0.13	12.5		
4968	0.012	27.5	7730	0.12	12.5		
5117	0.022	20.0	7890	0.088	12.5		
5191	0.024	20.0	7980	0.085	12.5		

⁴⁰Ar Levels

E(level)	L&	ε ^{@&}	E(level)	L&	ε [@] &	E(level)	L&	ε ^{@&}
0^{\ddagger}	0	3.5	4495 10	(5)	0.02	6140 15	(5)	0.03
$2121^{\dagger} 5$	Z	≈0.1 ^{<i>c</i>}	4003 10 4798 10	3,4		6303 <i>13</i> 6470 <i>15</i>	(2)	
2524 5	(2)	0.03	4870 10	3,4	0.2 ^b	6670 15		
2892 5 3207 5	(3,4) 2	1.5 ^{<i>a</i>}	4968 <i>10</i> 5117 <i>15</i>	(5)	0.02	6760 <i>15</i> 6835 <i>15</i>	3,4 3.4	
3468 5	(6)	0.4	5191 15	(2)	0.4	7070 15	-,-	
3507 5 3681 5	(2) 3.4	$0.05 \\ 0.9^{b}$	5298 15 5393 15	2	0.4	7160 15		
3926 5	2	0.8	5454 15	3,4	0.05 ^b	7495 15		
4053 5		0.06 ^a	5500 15	3,4	0.04 ^b	7640 15	2	
4092 " 10 4310 10	2	0.7	5671 <i>15</i> 5835 <i>15</i>	3,4 3.4	0.2 ^{<i>a</i>} 1.3.0.6	7730 <i>15</i> 7890 <i>15</i>		
4430 5	3,4	3,1.5	5883 15	2	2	7980 15		

Continued on next page (footnotes at end of table)

³⁸Ar(t,p) 1975Fl08 (continued)

⁴⁰Ar Levels (continued)

[†] Summed absolute cross section=0.02 mb/sr (1973Ca13).

[±] Summed absolute cross section=0.73 mb/sr (1973Ca13).

^(a) Enhancement factor (ε) is defined by $\varepsilon = (d\sigma/d\Omega) \exp/218\sigma_{DWUCK}$. Form factors used were $f_{7/2}^2$ for most of the levels and

- $f_{7/2}\ d_{3/2}$ for levels with L=3 or L=5 transfer.
- & From comparisons of measured differential cross sections with DWBA predictions (1975Fl08).
- ^{*a*} For L=4. ^{*b*} For L=3.

^{*c*} For L=0. $\sigma(\theta)$ is uncharacteristic of L=0 distribution (1975Fl08).

[#] Weak group (1975Fl08).