Adopted Levels 1992Ti02

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, D. R. Tilley, H. R. Weller and G. M. Hale	NP A541 1 (1992)	8-Oct-1991

 $S(n)=1.14\times10^4 \text{ syst}; S(p)=-3.10\times10^3 22$ 2012Wa38

Note: Current evaluation has used the following Q record 3.10E3 21 1997Au07.

The stability of ⁸B against particle decay into ⁴He+⁴Li, sets an upper limit of 1.7 MeV on the separation energy of ⁴Li into p+³He (1952Sh44). The instability of ⁴h against particle decay (discussion in 1992Ti02) makes the particle stability of ⁴Li very unlikely, since the Coulomb energy of ⁴Li is approximately 1.7 MeV larger than that of ⁴He (1963We10), and the nuclear energies should be identical because of charge symmetry. Indeed all decisive tests of the stability of ⁴Li have failed. Searches for its β decay have given negative results (discussion in 1992Ti02). Indirect proof of the non-existence of ⁴Li can be provided by a measurement of the solar neutrino flux which would be strongly influenced by the existence of ⁴Li. See 1968Me03. For other theoretical work on ⁴Li see 1979Hu02, 1981Ka39, 1988Co15.

The level structure of ⁴Li presented here is based on an R-matrix analysis (discussed in 1992Ti02) that gives a good representation of all the p+³He scattering data at proton energies below 20 MeV. Breit-Wigner resonance parameters from the analysis are given. The spin-correlation and ³He analyzing-power data included in the p-³He analysis determined that the lower 1⁻ level is primarily in the ³p state, while the upper 1⁻ is primarily in the ¹p state, removing the ambiguities in the earlier phase-shift solutions, as was discussed in 1973Fi04.

As in the case of the ⁴h levels, which were based on the ⁴Li parameters, all the levels are at least 1 MeV lower than they were in 1973Fi04. The only significant difference between the ⁴h and ⁴Li levels is the position of the ground state above the nucleon-trinucleon threshold, as would be expected from the simple model used to obtain the ⁴h parameters. Again, the parameters predict very broad, positive- parity, T=1 states in the E_{ex}=15-20 MeV range and antibound p-wave states that cannot yet be identified in the data. The known T=1 levels in the A=4 nuclei are summarized in the isobar diagram of 1992Ti02 fig.4.

The s-matrix poles resulting from the analysis are all far from the real axis with large decay widths, while their residues are relatively small, leading to small values of the strengths. Although the connection is not clear, the small residues for these poles may be connected with the anomalously small widths that have been observed in 1990Br14 and 1990Br17 that detect ⁴Li states in the particle spectra of breakup reactions. It may even be possible that these experiments are not detecting the 2⁻ and 1⁻ states as they assume, but positive parity states (0⁺ and 1⁺) whose s-matrix poles are much lower in energy than are the K(R)-matrix poles.

⁴Li Levels

Cross Reference (XREF) Flags

A 3 He(p,p)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	2-		A	%p=100
				Γ=6.03 MeV; T=1
320	1-	7.35 MeV	Α	4.07 MeV above the p+ ³ He mass. %p=100
320	1	7.33 WEV	A	%p=100 T=1
				Strength is primarily ³ p ₁ .
2080	0_	9.35 MeV	Α	%p=100
				T=1
2850	1-	13.51 MeV	A	%p=100
				T=1
				Strength is primarily ¹ p ₁ .

[†] Level energies from an R-matrix calculation.