Adopted Levels 1992Ti02

History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. H. Kelley, D. R. Tilley, H. R. Weller and G. M. Hale	NP A541 1 (1992)	8-Oct-1991

 $O(\beta^{-})=2.220\times10^{4} \ 10$; $S(n)=-1.60\times10^{3} \ 10$ 2012Wa38

Note: Current evaluation has used the following O record \$ 23.51E3 11-2.91E3 11

1997Au07.

The stability of the first excited state of ^8Li against decay into decay into $^4\text{He}+^4\text{H}$ (1988Aj01) sets an upper limit for B(^4H) ≤ 3.53 MeV (see refs in 1992Ti02). This also sets a lower limit to the β^- decay energy $^4\text{H}->^4\text{He}$ of 17.06 MeV. The upper limit of the β^- decay energy would be 20.60 MeV, if ^4H is stable against decay into $^3\text{H}+\text{n}$. Estimates for the expected half–life of the β decay: if $J^\pi(^4\text{H})=0^-$, I^- , 2^- , $T_{1/2}\geq 10$ min; if $J^\pi(^4\text{H})=0^+$, I^+ , $T_{1/2}\geq 0.03$ s (see discussion in 1992Ti02). Experimentally there is no evidence for any β^- decay of ^4H , nor has particle stable ^4H been observed. Evidence for a particle-unstable state of ^4H has been obtained in $^7\text{Li}(\pi^-, t)^3\text{H}+\text{n}$ at 8 MeV 3 above the unbound $^3\text{H}+\text{n}$ mass with a width of 4 MeV. For other theoretical work see (1976Ja24, 1983Va31, 1985Ba39, 1988Go27).

The level structure presented here is obtained from a charge-symmetric reflection of the R-matrix parameters for ⁴Li after shifting all the p-³He E(λ) values by the internal Coulomb energy difference ΔE(Coulomb)=-0.86 MeV. The parameters then account well for measurements of the n-³H total cross section (1980Ph01) and coherent scattering length (1985Ra32), as is reported in (1990Ha23). The Breit-Wigner resonance parameters from that analysis for channel radius a(n-t)=4.9 fm are given. The levels are located substantially lower in energy than they were in the previous compilation (1973Fi04), as will be true for all the T=1 levels of the A=4 system. The ⁴Li analysis unambiguously determined the lower 1⁻ level to be predominantly ³p₁ and the upper one to be mainly ¹p₁; that order is preserved, of course, in the ⁴H levels. In addition to the given levels, the analysis predicts very broad positive-parity states at excitation energies in the range 14-22 MeV, having widths much greater than the excitation energy, as well as antibound p-wave states approximately 13 MeV below the 2⁻ ground state. Parameters were not given for these states because there is no clear evidence for them in the data.

The structure given by the s-matrix poles is quite different, however. The p-wave resonances occur in a different order, and the positive-parity levels (especially for 0^+ and 1^+) are much narrower and lower in energy. It is possible that these differences in the s-matrix and K(R)-matrix pole structures, which are not yet fully understood, could explain the puzzling differences that occur when these resonances are observed in the spectra of multi-body final states.

⁴H Levels

Cross Reference (XREF) Flags

A ${}^{4}\text{He}(\pi^{-},X)$ B ${}^{4}\text{He}(n,p)$

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0	2-		A	%n=100
				Γ=5.42 MeV; T=1
210				3.19 MeV above the N+ ³ H mass.
310	1-	6.73 MeV	AB	%n=100
				T=1
				Strength is primarily ³ p ₁ .
2080	$^{0-}$	8.92 MeV		%n=100
				T=1
2830	1-	12.99 MeV	AB	%n=100
				T=1
				Strength is primarily ¹ p ₁ .

[†] Level energies from an R-matrix calculation.