Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 149, 1 (2018)	1-Jan-2018

 $S(n)=16740 SY; S(p)=840 SY; Q(\alpha)=-5010 SY 2017Wa10$

 $\Delta(S(n))=360, \ \Delta(S(p))=280, \ \Delta(Q(\alpha))=280 \ (syst, \ 2017Wa10).$

 $Q(\beta^+)=16370\ 210,\ Q(\varepsilon p)=16970\ 210\ (syst,\ 2017Wa10).$

First identification of ³⁹Ti nuclide by 1990De43.

1990De43: ³⁹Ti produced In ⁵⁸Ni(58 Ni,X) reaction At 65 MeV/nucleon; measured β -delayed protons, T_{1/2}. No evidence found for delayed two-proton decay.

1992Mo15: ³⁹Ti produced In Ca(³He,X) reaction At 110 MeV. Measured β -delayed two-proton sum spectra. Deduced IAS for ³⁹Sc.

1994B110: ³⁹Ti produced In fragmentation of ⁵⁸Ni beam At 650 MeV/nucleon with a ⁹Be target.

2001Gi01 (also 2001Gi02,2002Ch28): ³⁹Ti produced In fragmentation of ⁵⁸Ni beam At 74.5 MeV/nucleon with natural Ni target; GANIL. Measured delayed protons, T_{1/2}, yields.

2007Do17: ³⁹Ti was produced in Ni(⁵⁸Ni,X) reaction at 74.5 MeV/nucleon at GANIL. Measured decay-time distribution, β -delayed proton and γ spectra. Deduced ³⁹Ti half-life, decay branching ratios.

2016B105: 9 Be(78 Kr,X) E=345 MeV/nucleon. Measured σ .

Theoretical calculations: 2013Ti01 (atomic mass).

Additional information 1.

2001Gi01 report following delayed proton groups from ³⁹Ti decay: 2440 25 (8% 5), 3575 30 (6.5% 45), 3990 30 (7.3% 45), 4880 40 (12.5% 65), with energy in lab system. The first three groups are interpreted by 2001Gi01 As ε p decay to ³⁸Ca, the fourth group As ε 2p decay to ³⁷K; corresponding proton (sum) line In 1992Mo15 is 4750 40.

2007Do17 report two proton groups of 3270 20 (7% 2) and 5170 30 (10% 3) (energy in c.m. system) from ³⁹Ti ε p decay but do not place them in the decay scheme due to low statistics and lack of detailed analysis.

³⁹Ti Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments	
0	$(3/2^+)$	28.5 ms 9	$\% \varepsilon + \% \beta^+ = 100$	
			$\Re \varepsilon p + \Re \varepsilon 2p = 100$	
			T=5/2	
			$T_{1/2}$: from 2007Do17. Others: 31 ms +6-4 (2001Gi01), 26 ms +8-7 (1990De43).	
			J^{π} : from systematics (1992Mo15,2017Au03).	
			delayed-2 proton decay observed by 1992Mo15; % εp =93.7 28 reported in 2007Do17. From	
			systematics, $\mathscr{E}p=85$ 15; $\mathscr{E}2p=15$ (2017Au03).	