³⁹Ti ε decay (28.5 ms) 2007Do17,2001Gi01,1992Mo15

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 149, 1 (2018) 1-Jan-2018

Parent: ³⁹Ti: E=0; $J^{\pi}=(3/2^+)$; $T_{1/2}=28.5$ ms 9; $Q(\varepsilon)=16370$ SY; $\%\varepsilon+\%\beta^+$ decay=100.0

2007Do17: 39 Ti was produced in Ni(58 Ni,X) reaction at 74.5 MeV/nucleon at GANIL. Measured decay-time distribution, β -delayed proton and γ spectra. Deduced 39 Ti half-life, decay branching ratios.

2001Gi01 (also 2001Gi02,2002Ch28): ³⁹Ti source was produced in fragmentation of E=74.5 MeV ⁵⁸Ni beam from GANIL on a natural Ni target. Fragments were selected with the Alpha spectrometer and the LISE3 separator and implanted into a silicon telescope. Measured delayed protons, decay-time distribution. Deduced parent T_{1/2}, IAS for ³⁹Sc.

1992Mo15: 39 Ti source was produced in Ca(3 He,X) reaction with E=110 MeV 3 He beam from the 88-inch cyclotron at Lawrence Berkeley Laboratory on natural Ca target. Charged particles were detected with telescopes of Si detectors. Measured β -delayed two-proton sum spectra. Deduced IAS for 39 Sc.

1990De43: 39 Ti produced In 58 Ni(58 Ni,X) reaction At 65 MeV/nucleon at GANIL. Measured β -delayed protons, $T_{1/2}$. No evidence found for delayed two-proton decay.

The decay scheme is incomplete since most of the observed β -delayed protons are not placed.

³⁹Sc Levels

E(level) $J^{\pi^{\dagger}}$ Comments

Comments

Comments

Comments

Comments

Comments

Comments

E(level): possible IAS from 2001Gi01, deduced from measured delayed-proton energy of 4880 40 (lab system) by suggesting that this proton group corresponds to the β-delayed two-proton decay of ³⁹Ti to the ground state in ³⁷K via the IAS in ³⁹Sc. However, 2007Do17 consider the placement of this proton group as questionable and conclude that a firm assignment of this proton group needs better and higher statistics data. Other: 8820 40 (1992Mo15).

F(decay)

E(level)

Iβ+ ‡

Ιε

Log ft

ε, β^+ radiations

Comments

E(decay)	D(ICVCI)	Ψ	10	Logji	$I(e \mid p)$	Commence
(7410 <i>SY</i>)	8960	11 3	0.0077 21	≈3.4	11 3	av E β =2993 30; ε K=0.000629 18; ε L=6.32×10 ⁻⁵ 18; ε M+=1.08×10 ⁻⁵ 3
						$I(\varepsilon + \beta^+)$: weighted average of 12.5 65 for the proton group of 4880 40 (lab system) in 2001Gi01 and 10 3 for the proton
						group of 5170 30 (c.m. system) in 2007Do17. It is suggested by 2001Gi01 that this proton group corresponds to β -delayed
						two-proton decay branch and is via the IAS in ³⁹ Sc, but this placement is considered as questionable by 2007Do17. Other: 14 (calculated, 1992Mo15).

[†] From measured emission probability of β -delayed two-proton in ³⁹Ti decay. Total emission probabilities of β -delayed protons in ³⁹Ti decay is 100%, mostly by one-proton emission and the two-proton decay mode is expected from theoretical predictions but has not been established yet.

 $^{^{39}}$ Ti-J^{π},T_{1/2}: From Adopted Levels. T_{1/2} is adopted from 2007Do17, others: 31 ms +6-4 from 2001Gi01, 26 ms +8-7 from 1990DE43.

³⁹Ti-Q(ε): 16370 200 (syst,2017Wa10).

³⁹Sc is unbound in g.s., it decays by proton emission to ³⁸Ca and two-proton decay to ³⁷K.

[†] From Adopted Levels.

[‡] Absolute intensity per 100 decays.