¹²C(⁴⁸Ca,Xγ) 2016Lu14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 149, 1 (2018)	1-Jan-2018

2016Lu14: ⁴⁸Ca beam of E=66.7 MeV/nucleon at mid-target was produced from a ⁴⁸Ca primary beam impinging upon a 1363 mg/cm² ⁹Be production target at the Coupled Cyclotron Facility of NSCL. Fragments were separated with a 240 mg/cm² Al degrader in the A1900 fragment separator. The secondary target was a 149 mg/cm² glassy ¹²C. Projectile-like reaction residues were detected and identified in the S800 spectrograph and γ rays were detected by the Gamma Ray Energy Tracking In-beam Nuclear Array (GRETINA) consisting of seven detector modules each containing four high-purity, 36-fold segmented Ge crystals. Measured E γ , I γ , $\gamma\gamma$ -coin, projectile- γ -coin. Large-scale shell-model calculations.

Authors state that from the present data on ³⁹S it is hardly possible to propose a firm level scheme, not just due to the lack of coincidences but also related to the expected structure at low energies; two low-lying nanosecond isomers are expected based on shell-model calculations but in-beam γ -ray spectroscopy at beam velocities in this study has limited sensitivity to nanosecond isomers.

$\gamma(^{39}S)$

Observed coincidences: 337γ -466 γ , 370γ -533 γ (weak), 337γ -466 γ (weak).

Eγ	I_{γ}^{\ddagger}
^x 337 4	28 5
^x 370 [†] 6	93
^x 392 6	42 7
^x 466 4	71 10
^x 533 [†] 4	38 7
^x 702 4	42 8
^x 1518 4	100 15
^x 1655 6	59 11
^x 1728.5	43.9

[†] Newly identified γ rays. Authors claim that 370 γ feeds the state that emits 533 γ based on observed coincidence.

[‡] Relative intensities.

^x γ ray not placed in level scheme.

 ${}^{39}_{16}S_{23}$