	⁴² C	$a(\mathbf{p},\alpha\gamma)$ 19	968Lo03		
		History			
Type Author		Citation		Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 149,	1 (2018)	1-Jan-2018	

1968Lo03: E=10.6-11.1 MeV proton beams were produced from the Oxford University tandem generator. Target was a layer of about 120 μ g/cm² Ca metal (86% in ⁴²Ca) on a carbon backing of about 15 μ g/cm². Alpha particles were detected with a surface-barrier silicon counter and γ rays were detected with two NaI(Tl) crystals. Measured E α , E γ , I γ , $\gamma(\theta)$, $\alpha\gamma$ -coin. Deduced levels, J, π , γ -ray branching ratios and mixing ratios. Comparisons with available data. Report data for 2530, 2820 and 3020 levels. 1968Lo03 also report γ -ray data for 3600 to 4740 level from ${}^{39}K(p,p'\gamma)$ and 13 proton groups from 2530-4740 in $^{39}K(p,p').$

All data are from 1968Lo03.

³⁹K Levels

E(level)	$J^{\pi \dagger}$	Comments	Comments				
0	3/2 ⁺	J^{π} : from Adopted Levels.					
2530	1/2,3/2,5/2	J^{π} : 1/2 ⁺ in Adopted Levels.					
2820	7/2,(5/2)	J^{π} : 7/2 ⁻ in Adopted Levels.					
3020	3/2,5/2,9/2	J^{π} : 3/2 ⁻ in Adopted Levels.					

[†] From 1968Lo03 based on $\gamma(\theta)$, unless otherwise noted.

γ ⁽³⁹ K)										
E _i (level)	J_i^π	Eγ	I_{γ}	E_f	J_f^π	Mult.	δ	Comments		
2530	1/2,3/2,5/2	2530	100	0	3/2+	D+Q		$ δ: -0.27 +7-8 \text{ for J=3/2 and }+0.19 +6-5 for J=5/2, estimated by the evaluator from the plot of \chi^2 versus arctg(\delta) in Figure 3 of 1968Lo03; for J=1/2, the \chi^2 distribution is independent of \delta in that plot. \delta values for this transition are not given in 1968Lo03.A_2=+0.04 9, A_4=+0.12 13.$		
2820	7/2,(5/2)	290	<6	2530	1/2,3/2,5/2					
		2820	100	0	3/2+	Q(+0)	+0.19 10	δ: for J=7/2. Other possible value of +4.3 +20-11 for J=7/2 is less likely from Weisskopf estimates; for J=5/2, $δ$ =+0.58 +25-10. A ₂ =+0.59 16, A ₄ =+0.05 21.		
3020	3/2,5/2,9/2	200	<14	2820	7/2,(5/2)					
		490 [†]	<6	2530	1/2,3/2,5/2					
		3020	100	0	3/2+	D(+Q)	+0.03 15	δ: for J=3/2. Other possible value of +3.3+23-12 for J=3/2 is rejected from Weisskopfestimates. For J=5/2, δ=+0.50 15; for J=9/2,δ(O/Q)<-6 or >+2.7.A2=+0.47 14, A4=+0.03 20.		

[†] Placement of transition in the level scheme is uncertain.

Legend

$\frac{^{42}\text{Ca}(\mathbf{p},\alpha\gamma)}{1968\text{Lo03}}$

Level Scheme

