Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 149, 1 (2018)	1-Jan-2018					

 $Q(\beta^{-})=3442$ 5; S(n)=8073.4 17; S(p)=10228 7; Q(α)=-7367.3 26 2017Wa10

S(2n)=14181.3 17, S(2p)=25380 40 (2017Wa10).

First identification of ³⁹Cl nuclide by 1949Ha53.

Other reactions:

 40 Ar(μ^- ,X): 2008K102, 2003G107.

⁴⁰Ar(p,2p) E=1.93, 1.96 MeV; deduced dibaryon resonance: 1986Er07.

⁴⁰Ar(p,2p) E=460 MeV. Measured $\sigma(\theta)$, Q value: 1966Ty01. Main reactions for production of ³⁹Cl: ⁴⁰Ar(γ ,p); ⁴⁰Ar(α,α p); ³⁷Cl(t,p).

Additional information 1. 1999Ai02: ³⁹Cl beam produced by fragmentation of ⁵⁵Mn beam At 50, 90 MeV/nucleon with a ⁹Be target. Measured energyintegrated cross sections; deduced strong absorption radii.

³⁹Cl Levels

Additional information 2.

Cross Reference (XREF) Flags

		A B C	${}^{39}S \beta^{-} dec$ ${}^{37}Cl(t,p)$ ${}^{37}Cl(t,p\gamma)$ ${}^{40}Ar(\gamma,p)$	cay (11.5 s) E 40 Ar(pol d, {}^{3}He),(d, {}^{3}He) F 40 Ar(t, α) G 160 Gd(37 Cl, 39 Cl γ) H 208 Pb/ 40 Ar X $_{22}$)				
+	_+	н Т	AI(y,p)					
E(level)	J ^{<i>n</i>} +	$T_{1/2}$ "	XREF	Comments				
0	3/2+	56.2 min 6	ABCDEFGH	$\%\beta^-=100$ J ^{π} : L(pol d, ³ He)=2 from 0 ⁺ ; first forbidden-unique β^- decay to 7/2 ⁻ in 39 Ar				
				$T_{1/2}$: from 1972En01 (average of four independent measurements). Others: 55.5 min 2 (1949Ha53,1950Ha77); 55 min, 58 min (1952Ru23), 1956Pe38. The value given in 1949Ha53 has not been used by the evaluators in averaging, even though it has a much lower uncertainty than that of 1972En01. Based on sharp discrepancies noted in half-life measurements, 1970Al21 pointed out that some of the older measurements had large counting statistics thus giving low uncertainties, but the systematic errors may have been larger than the statistical errors and may not have been included				
396.42 7	1/2+	>1.4 ps	ABCDEF H	XREF: $D(500)F(364)$. J ^{π} : L(pol d, ³ He)=0 from 0 ⁺ .				
1301.21 15	$(5/2^+)^{\&}$	>2.1 ps	ABC E GH	XREF: E(?). J ^{π} : 904.8 γ to 1/2 ⁺ ; not 1/2 from intensity ratio in (t,p γ); log <i>ft</i> =6.1 from (7/2) ⁻ .				
1697.66 <i>17</i>	5/2-	0.8 ps +10-3	ABC e H	$J_{1/2}^{\pi}$: See J^{π} comment for 1722 level; 1696.5 γ to 3/2 ⁺ and RUL rules out $7/2^{-}$.				
1722.5 4	5/2+	0.30 ps 6	BCe H	J ^{π} : L(pol d, ³ He)=2+3 for 1698+1722 gives 5/2 ⁻ ,7/2 ⁻ for one component and 5/2 ⁺ for the other; 1326.0 γ to 1/2 ⁺ and RUL determines this level is the L=2, J^{π} =5/2 ⁺ component while 1698 level is the L=3, J^{π} =5/2 ⁻ ,7/2 ⁻ component.				
1744.93 <i>13</i>	$(7/2^+)$	0.90 ps 28	BC e H	J^{π} : 1745.03 γ to 3/2 ⁺ ; not 1/2 from $I\gamma(0^{\circ})/I\gamma(90^{\circ})$ in (t,p γ); 7/2 ⁺ from				

Adopted Levels, Gammas (continued)

³⁹Cl Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
1785.86 <i>18</i>	(7/2 ⁻)	>1.4 ps	ABC GH	shell-model calculations in ²⁰⁸ Pb(⁴⁰ Ar,X γ). J ^{π} : log <i>ft</i> =5.83 from (7/2) ⁻ in ³⁹ S β ⁻ decay; 484.64 γ to (5/2 ⁺); possibly the lowest 7/2 ⁻ state, as expected from systematics.
2060.2 9	5/2+	<35 fs	BC E H	$T_{1/2}$: <2.8 ns from p γ (t) in (t,p γ). J ^{π} : L(pol d, ³ He)=2 from 0 ⁺ and L+1/2 transfer from analyzing power.
2227 5 7	1/2+	55 fc 28	DC E U	Additional information 3. $I^{\pi_{i}}$ L (nod d ³ Ho)=0 from 0 ⁺
2423.7 3	$(9/2^+)^{\&}$	>1.2 ps	BC E H BC GH	J^{π} : 637.7 γ to (7/2 ⁻), 678.8 γ to (7/2 ⁺), 1122.9 γ to (5/2 ⁺); 9/2 ⁺ from shell-model calculations in (³⁷ Cl. ³⁹ Cl γ) (1994Fo04).
2489.4 4	5/2+	70 fs 35	BC E	J^{π} : L(pol d, ³ He)=2 from 0 ⁺ and L+1/2 transfer from analyzing power.
2571.98 25	(9/2)-		A H	J ^{π} : log ft=5.4 from (7/2) ⁻ in ³⁹ S β ⁻ decay (9/2 ⁻) from shell-model predictions in (⁴⁰ Ar,X γ) (2013Sz02).
2586.0 20		<0.21 ps	BC	
2834.3 <i>3</i>	$(11/2^+)^{\&}$	>1.2 ps	BC GH	J ^{π} : from shell-model predictions in (⁴⁰ Ar,X γ) (2013Sz02).
2962.3 6	$(11/2^{-})$	-	Н	J ^{π} : from shell-model predictions in (⁴⁰ Ar,X γ) (2013Sz02).
3115.6 6		0.15 ps 4	BC	
3171 10	$5/2^+, 1/2^+$		E	J ^{π} : L(pol d, ³ He)=2,0 and L+1/2 transfer from analyzing power.
3340?			В	
3475 44	5/2+		E	E(level): from (pol d, 'He).
3517.1 9	$(15/2^+)^{\&}$	<0.14 ps	GH	J^{π} : L(pol d, ³ He)=2 and L+1/2 transfer from analyzing power. J^{π} : from shell-model predictions in (⁴⁰ Ar,X γ) (2013Sz02). J^{π} : 1110 Oc to (9/2 ⁺) and 2222 for to (5/2 ⁺).
3907 22 6	(3/2, 7/2, 9/2)	<0.14 ps	BC	$J = 1110.07 \text{ to } (9/2^{-}) \text{ and } 2252.07 \text{ to } (5/2^{-}).$
4013 14	$5/2^{+}$		E	J^{π} : L(pol d. ³ He)=2 and L+1/2 transfer from analyzing power.
4050.4? 7			BC	XREF: B(?)C(?).
4.35×10 ³ [@] 10	$(5/2^+)^{@}$		Е	
4354.4? 19			BC	XREF: B(4350)C(?).
4.63×10 ³ [@] 18	$(5/2^+)^{@}$		ΒE	XREF: B(4830?).
5.18×10 ³ [@] 18	$(5/2^+)^{@}$		Е	
5.45×10^3 @ 10	$(5/2^+)^{@}$		Е	
$5.70 \times 10^3 @ 15$	$(5/2^+)^{@}$		Е	
5.98×10 ³ [@] 13	$(5/2^+)^{@}$		Е	
7.6×10^3 @ 15	$(5/2^+)^{@}$		Е	
	· · · /			

[†] From a least-squares fit to γ -ray energies for levels populated in γ -ray studies.

[‡] When L(pol d, ³He) is quoted as an argument, it implies that L value is from $\sigma(\theta)$, and L+1/2 or L-1/2 transfer is from analyzing powers.

[#] From DSAM in $(t,p\gamma)$ for excited states, unless otherwise noted.

^(e) Multiplet of levels in a range of 200 keV or more; the multiplet associated with pickup of $d_{5/2}$ proton. J=(5/2⁺) is from L(pol d,³He)=2 and L+1/2 transfer for the multiplet.

& The assignment consistent with sdfp (space)-shell model calculations with $\pi d_{3/2}$ for g.s. in (³⁷Cl,³⁹Cl γ). The excitations correspond to $\pi d_{3/2}(v f_{7/2}^2)$, seniority=3.

Adopted Levels, Gammas (continued)

$\gamma(^{39}\text{Cl})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	Comments
396.42	1/2+	396.42 7	100	0	3/2+		E_{γ} : others: 396.4 <i>l</i> from (⁴⁰ Ar,X γ), 396.50 <i>20</i> from
1301.21	(5/2+)	904.8 5	6.6 21	396.42	1/2+	[E2]	B(E2)(W.u.)<3.5 E _γ : weighted average of 903.8 6 from ³⁹ S $β^-$ decay
							and 905.1 <i>3</i> from (t,p γ). I _{γ} : weighted average of 6.8 <i>21</i> from ³⁹ S β^- decay and 6.4 <i>21</i> from (t,p γ).
		1301.1 <i>3</i>	100.0 21	0	3/2+		E_{γ} : unweighted average of 1300.52 <i>16</i> from ³⁹ S β ⁻ decay, 1301.46 <i>10</i> from (t,pγ), and 1301.3 <i>3</i> from (⁴⁰ Ar,Xγ).
1697.66	5/2-	396.5 1	83 7	1301.21	(5/2+)	[E1]	B(E1)(W.u.)=0.005 4 E _γ : from (⁴⁰ Ar,Xγ). Other: 396.50 20 from ³⁹ S β ⁻ decay.
		1696 0 6	100.8	0	$3/2^{+}$	[E1]	I_{γ} : from ³⁹ S β^- decay. B(E1)(W µ) = 8×10 ⁻⁵ + 6-5
		10,010 0	100 0	Ū	0/2	[21]	E_{γ} : unweighted average of 1696.62 <i>17</i> from ³⁹ S β^- decay and 1695.4 6 from (t,p γ).
1722.5	5/2+	421.3	14 10	1301.21	$(5/2^+)$		r_{γ} . Hold 5 β decay.
		1326.0 <i>4</i> 1722 5 7	100 <i>10</i> 90 <i>10</i>	396.42 0	$\frac{1}{2^+}$	[E2]	B(E2)(W.u.)=29 + 13 - 9
1744.93	$(7/2^+)$	443.66 10	59 7	1301.21	$(5/2^+)$		E _{γ} : weighted average of 443.66 <i>10</i> from (t,p γ) and 443.7 <i>3</i> from (⁴⁰ Ar,X γ).
		1745.01 15	100 7	0	3/2+	[E2]	I_{γ} : other: 33 5 from (⁴⁰ Ar,X γ). B(E2)(W.u.)=3.1 +18-9 E _{γ} : weighted average of 1745.03 15 from (t,p γ) and
1785.86	(7/2-)	484.64 10	100	1301.21	(5/2+)	[E1]	1744.5 8 from (⁴⁰ Ar, Xγ). B(E1)(W.u.)<0.0037 E.: weighted average of 484.85 24 from ³⁹ S β ⁻ decay
							(11.5 s), 484.61 <i>10</i> from (t,p γ), and 484.5 4 from (⁴⁰ Ar,X γ).
2060.2	5/2+	2060.1 9	100	0	3/2+		E_{γ} : weighted average of 2060.3 <i>10</i> from (t,p γ) and 2060.0 9 from (40 Ar,X γ).
2237.5	1/2+	1841.0 7	100 8	396.42	1/2+		E_{γ} : weighted average of 1841.4 7 from (t,p γ) and 1840.5 7 from (⁴⁰ Ar,X γ).
2422 7	$(0/2^{+})$	2237.4	30 8	0	$3/2^+$	(E1)	$P(E_1)(W_{11}) < 0.0012$
2425.7	(9/2)	037.7 3	100 5	1783.80	(1/2)	[[[]]	E_{γ} : weighted average of 637.7 <i>3</i> from (t,p γ) and 637.8 7 from (40 Ar,X γ).
		678.8	13 5	1744.93	$(7/2^+)$		r_{γ} . other. 100 20 from ($Ai, A\gamma$).
		1122.9 4	36 5	1301.21	(5/2 ⁺)	[E2]	B(E2)(W.u.)<8.1 E_{γ} : weighted average of 1122.9 4 from (t,p γ) and 1123 <i>I</i> from (⁴⁰ Ar,X γ).
2489.4	5/2+	1188.2 <i>3</i>	100	1301.21	$(5/2^+)$		I_{γ} : other: 38 9 from (⁴⁰ Ar,X γ).
2571.98 2586.0	(9/2)-	874.31 <i>18</i> 1284 8 20	100	1697.66	$5/2^{-}$		
2834.3	$(11/2^+)$	410.65 13	100 4	2423.7	$(9/2^+)$		E_{γ} : other: 410.6 4 from (⁴⁰ Ar,X γ).
		1089.2 4	15 4	1744.93	$(7/2^+)$	[E2]	B(E2)(W.u.)<5.1 E _v : other: 1089 <i>I</i> from (40 Ar X _V)
2962.3	$(11/2^{-})$	1176.4 5	100	1785.86	$(7/2^{-})$		E_{γ} : from (⁴⁰ Ar,X γ).
3115.6 3517.1	$(15/2^+)$	1370.65 682.88	100 100	1/44.93 2834.3	$(1/2^+)$ $(11/2^+)$		E_{γ} : from (⁴⁰ Ar,X γ).

Continued on next page (footnotes at end of table)

$^{39}_{17}\text{Cl}_{22}\text{-}4$

Adopted Levels, Gammas (continued)

 γ (³⁹Cl) (continued)

E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3533.7	$(5/2^+, 7/2, 9/2^+)$	1110.0 5	100 17	2423.7	$(9/2^+)$
		1788.7	55 17	1744.93	$(7/2^+)$
		2232.4	17 14	1301.21	$(5/2^+)$
3907.2?		1483.4 [‡] 5		2423.7	$(9/2^+)$
		2606.7 [‡] 20		1301.21	$(5/2^+)$
4050.4?		3654 [‡]		396.42	$1/2^{+}$
		4050 [‡]		0	3/2+
4354.4?		2567.8 [‡] 20		1785.86	$(7/2^{-})$
		3059 [‡] 6		1301.21	$(5/2^+)$

[†] From (t,pγ), unless otherwise noted. Quoted energy values without uncertainties are from level-energy differences. Upper limits of intensities are given for many transitions in $(t,p\gamma)$; they are not listed here. See $(t,p\gamma)$ dataset for details.

[‡] Placement of transition in the level scheme is uncertain.

 $^{39}_{17}\text{Cl}_{22}$