³⁷Cl(t,pγ) **1973Wa02**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 149, 1 (2018)	1-Jan-2018

1973Wa02: E=3.4 MeV triton beam was produced from the Brookhaven National Laboratory 3.5-MeV Van de Graaff accelerator. Target was BaCl₂ enriched to 96.1% in ³⁷Cl with a thickness of 520 20 μ g/cm² evaporated onto a 42 mg/cm² Ta foil. Protons were detected with a 1-mm-thick annular surface-barrier detector and γ rays were detected with a coaxial 40-cm³ Ge(Li) detector. Measured E γ , I γ , p γ -coin, Doppler-shift attenuation (DSA). Deduced levels, J, π , T_{1/2}, γ -ray branching ratios.

1974McZD: inverse kinematics reaction: ${}^{3}H({}^{37}Cl,p\gamma)$, but no details are available.

³⁹Cl Levels

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	Comments
0 396.42 7 1301.47 9 1695.4 6 1722.5 4	$3/2^+$ $1/2^+$ $(5/2^+)^{@}$ $5/2^-$ $5/2^+$	>1.4 ps >2.1 ps 0.8 ps +10-4 0.30 ps 6	$T_{1/2}$: <2.8 ns from py(t).
1745.12 <i>10</i> 1786.10 <i>13</i> 2060.4 <i>10</i> 2237.9 6	$(7/2^+)^{@}$ $(7/2^-)^{@}$ $5/2^+$ $1/2^+$	0.90 ps 28 >1.4 ps <35 fs 55 fs 28	$T_{1/2}$: <2.8 ns from p $\gamma(t)$.
2423.94 <i>23</i> 2489.7 <i>4</i> 2586.3? <i>20</i>	(9/2 ⁺) [@]	>1.2 ps 70 fs 35 <0.21 ps	E(level): level uncertain In 1973Wa02, but group seen In (t,p) spectrum of 1973Wa02 and 1984An03.
2834.57 25 3115.7 6 3534.0 6 3907.4? 6 4050? 4354.6? 19	(11/2 ⁺) [@]	>1.2 ps 0.15 ps 4 <0.14 ps	

[†] From a least-squares fit to γ -ray energies.

[‡] From 1973Wa02 using DSAM with uncertainties including 15% contribution from stopping powers in the target.

[#] From Adopted Levels, unless otherwise noted.

^(a) (not 1/2) from $I\gamma(0^{\circ})/I\gamma(90^{\circ})$ ratio significantly different from unity. The numerical values of these ratios, however, are not given in 1973Wa02.

 $\gamma(^{39}\text{Cl})$

(level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J
396.42	$1/2^{+}$	396.42 7	100	0	3/2+	1745.12	$(7/2^+)$	1348.7 [‡]	<4	396.42	1/2
301.47	$(5/2^+)$	905.1 <i>3</i>	62	396.42	$1/2^{+}$			1745.03 15	63 4	0	3/2
		1301.46 10	94 2	0	$3/2^{+}$	1786.10	$(7/2^{-})$	484.61 10	100	1301.47	(5/2
695.4	5/2-	394.0 [‡]	<50	1301.47	$(5/2^+)$			1389.7 [‡]	<14	396.42	1/2
		1299.0 [‡]	<50	396.42	$1/2^{+}$			1786.1 [‡]	<9	0	3/2
		1695.4 6	>50	0	$3/2^{+}$	2060.4	$5/2^{+}$	274.3 [‡]	<16	1786.10	(7/2
722.5	$5/2^{+}$	421.0	75	1301.47	$(5/2^+)$			315.2 [‡]	<12	1745.12	(7/2
		1326.0 4	49 5	396.42	$1/2^{+}$			337.9 [‡]	<12	1722.5	5/2
		1722.5 7	44 5	0	$3/2^{+}$			364.9 [‡]	<9	1695.4	5/2
745.12	$(7/2^+)$	443.66 10	37 4	1301.47	$(5/2^+)$			758.9 [‡]	<11	1301.47	(5/2

Continued on next page (footnotes at end of table)

³⁷Cl(t,pγ) **1973Wa02** (continued)

γ (³⁹Cl) (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2060.4	5/2+	1663.9 [‡]	<10	396.42	1/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2060.3 10	100	0	3/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2237.9	$1/2^{+}$	177.6	<4	2060.4	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			492.8 [‡]	<5	1745.12	$(7/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			515.5 [‡]	<8	1722.5	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			542.5 [‡]	<5	1695.4	5/2-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			936.5 [‡]	<4	1301.47	$(5/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1841.4 7	77 6	396.42	$1/2^+$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 4 2 2 0 4	(0.1 0 ±)	2237.9	23.6	0	3/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2423.94	(9/2+)	186.0*	<4	2237.9	1/2 '
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			363.6 * 637.7.3	<5 67.3	2060.4	$5/2^{+}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			678.8	93	1745.12	$(7/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			701.5 [‡]	<4	1722.5	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			728.5 [‡]	<5	1695.4	5/2-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1122.9 4	24 3	1301.47	$(5/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2027.5‡	<6	396.42	$1/2^{+}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			2423.9 [‡]	<10	0	3/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2489.7		251.8 [‡]	<20	2237.9	$1/2^{+}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			429.3 [‡]	<4	2060.4	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			703.6 [‡]	<4	1786.10	$(7/2^{-})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			744.6 [‡]	<4	1745.12	$(7/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			767.2 [‡]	<6	1722.5	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			794.2 [‡]	<5	1695.4	5/2-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1188.2 <i>3</i>	100	1301.47	$(5/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2093.2	<7	396.42	$1/2^{+}$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			2489.6 [‡]	<8	0	3/2+
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2586.3?		1284.8 20	100	1301.47	$(5/2^+)$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2834.57	$(11/2^+)$	344.9+	<2	2489.7	(0/2+)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			410.65 <i>15</i>	873	2425.94	$(9/2^{+})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			390.0 ⁺	<2	2237.9	1/2 · 5/0+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1049.5	<3	2060.4	$5/2^{+}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1048.5*	<5	1745.10	(7/2) $(7/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1112 1	<3	1772 5	5/2 ⁺
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1139.1	<3	1695.4	5/2-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1533 1	<5	1301 47	$(5/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2438 1 [‡]	<5	396.42	(3/2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2834 5 [‡]	<5	0	3/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31157		281.2 [‡]	<15	2834 57	$(11/2^+)$
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0110.1		626 1 [‡]	<15	2034.57	(11/2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			691.8 [‡]	<12	2423.94	$(9/2^+)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			877 8 [‡]	<12	2237.9	$1/2^+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1055 4	<15	2060.4	5/2+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1329.6	<35	1786 10	$(7/2^{-})$
1393.3^{\ddagger} <22 1722.5 5/2 ⁺			1370.6 5	100	1745.12	$(7/2^+)$
			1393.3 [‡]	<22	1722.5	5/2+

Continued on next page (footnotes at end of table)

	³⁷ Cl(t,pγ) 1973Wa02 (continued)										
			γ ⁽³⁹ Cl) (continued)								
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}
3115.7		1420.3	<27	1695.4	5/2-	3534.0		1811.4 [‡]	<12	1722.5	5/2+
		1814.2 [‡]	<22	1301.47	$(5/2^+)$			1838.5 [‡]	<13	1695.4	5/2-
		2719.2 [‡]	<25	396.42	$1/2^{+}$			2232.4	10 8	1301.47	$(5/2^+)$
		3115.6 [‡]	<25	0	$3/2^{+}$			3137.4 [‡]	<10	396.42	$1/2^{+}$
3534.0		418.2 [‡]	<4	3115.7				3533.8 [‡]	<30	0	3/2+
		699.4 [‡]	<4	2834.57	$(11/2^+)$	3907.4?		1483.4 [‡] 5		2423.94	$(9/2^+)$
		1044.3 [‡]	<5	2489.7				2606.7 [‡] 20		1301.47	$(5/2^+)$
		1110.0 5	58 10	2423.94	$(9/2^+)$	4050?		3654 [‡]		396.42	$1/2^{+}$
		1296.0 [‡]	<10	2237.9	$1/2^{+}$			4050 [‡]		0	3/2+
		1473.6 [‡]	<10	2060.4	$5/2^{+}$	4354.6?		2567.8 [‡] 20		1786.10	$(7/2^{-})$
		1747.8 [‡] 1788.8	≤30 32 <i>10</i>	1786.10 1745.12	(7/2 ⁻) (7/2 ⁺)			3059 [‡] 6		1301.47	(5/2 ⁺)

[†] From 1973Wa02. Values of $E\gamma$ without uncertainties are from level-energy difference. Those γ rays with I γ given as upper limit are not adopted in Adopted Gammas, which are from Table III of 1973Wa02 but with no evidence for observation in the measurement. [‡] Placement of transition in the level scheme is uncertain.

 $^{39}_{17}\text{Cl}_{22}$ -5

From ENSDF

³⁹₁₇Cl₂₂-5