³⁹K(p,n) 1984Ra22,1985Wa24

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 149, 1 (2018) 1-Jan-2018

 $J^{\pi}(^{39}\text{K g.s.})=3/2^{+}$.

1984Ra22: E=120 and 160 MeV proton beams were produced from the Indiana University Cyclotron. Targets were 34.6 mg/cm² nat KF for E=120 MeV experiment and 28.7 mg/cm² 39 KF (99.96% in 39 K) for E=160 MeV run. Neutrons were detected with three large-volume time-compensated plastic scintillators (FWHM=400 keV at 120 MeV and 600 keV at 160 MeV). Measured $\sigma(E_n,\theta)$. Deduced levels, L-transfers, B(GT) from DWBA analysis.

1985Wa24: E=135 MeV proton beam was produced from the Indiana University Cyclotron. Neutrons were detected with large-volume, mean-timed neutron counters (FWHM \approx 320 keV at \approx 120 MeV). Measured $\sigma(E_n,\theta)$. Deduced levels, L-transfers, B(GT) from DWIA analysis.

Others:

1987Ra23: (p,n γ): measured absolute thick target γ yields.

1985Ki07: (p,n γ): measured relative thick target γ yields.

1978Ra15, 1970Ke08: threshold measurement. Deduced mass excess.

Additional information 1.

³⁹Ca Levels

E(level) [†]	L^{\ddagger}	$d\sigma/d\Omega (mb/sr)^{\&}$	Comments
0	0	3.6 2	L: 0 also from 1984Ra22. B(GT)=0.27 (normalized value to β -decay) (1984Ra22).
5150 [#]	0#	1.7 <i>I</i>	E(level): other: 5300 for the 5100+5500 doublet (1984Ra22). L: 0 for the 5100+5500 doublet (1984Ra22). B(GT)=0.19 2 (1984Ra22).
5500 [#]	0#		L: see comment for 5150 level.
6200	0	2.8 2	E(level): from 1984Ra22. L: other:(0+1) from 1984Ra22. B(GT)=0.31 3 (1984Ra22).
7250 [@]	$0^{@}$		
7450 [@]	$0^{@}$		
7900 [@]	$0^{@}$		
8000	0	1.70 <i>15</i>	E(level): other: 8100 (1984Ra22). L: other: (0+1) (1984Ra22). B(GT)=0.20 3 (1984Ra22).
8200 [@]	$0^{@}$		
8450 [@]	$0^{@}$		
8750 [@]	0@	0.9 1	E(level): other: 9000 (1984Ra22). L: other: (0+1) (1984Ra22). B(GT)=0.10 2 (1984Ra22).
10100	0		

[†] Read from Figure 1 of 1985Wa24, unless otherwise noted. Uncertainty is probably 50-100 keV.

[‡] From 1985Wa24; but no $\sigma(\theta)$ data are shown. Levels above 5 MeV are expected to be $d_{5/2}$ hole states with L=0 and S=1.

[#] Unresolved doublet in 1984Ra22.

[®] Levels are not resolved but indicated by arrows in Figure 1 of 1985Wa24.

[&]amp; From 1984Ra22, at 0°, uncertainties are statistical only. For absolute uncertainties, add 20% in quadrature (1984Ra22).