$^{38}\text{Al}\,\beta^-$ decay 2015St14

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017						

Parent: ³⁸Al: E=0; $J^{\pi}=(0^{-})$; $T_{1/2}=9.0 \text{ ms } 7$; $Q(\beta^{-})=20.38\times 10^{3} 39$; $\%\beta^{-}$ decay=?

Parent: ³⁸Al: E=0+x; J^{π} =(5⁻); $T_{1/2}$ =9.0 ms 7; $Q(\beta^{-})$ =20.38×10³ 39; % β^{-} decay=?

 38 Al(0+x)-E,J^{π}: Shell-model calculations predicts a 0⁻ ground state and a low-lying 5⁻ first excited state (2015St14). The authors argue that the proposed 3703-keV level in 38 Si could be strongly populated by the decay of isomer while the observed 3656-keV transition could be from the decay of ground state. Parentheses around J^{π} were added by the evaluator.

 38 Al(0+x)-T_{1/2}: From β -delayed 418 γ (t), 1074 γ (t), 1159 γ (t) and 1470 γ (t) (2015St14). These γ -ray transitions could be from β -decay of 38 Al (0⁻) ground state or (5⁻) isomer or both and thus the evaluator has assigned the measured value of T_{1/2} to both states; same values in Adopted Levels of 38 Al.

³⁸Al(0+x)-Q(β^-): From 2017Wa10.

2015St14: ³⁸Al ions were produced by fragmentation of a 345 MeV/nucleon ⁴⁸Ca beam from the RIBF facility at RIKEN on a 15 mm beryllium target. Fragments were separated and identified using the BigRIPS spectrometer and the zero-degree spectrometer (ZDS), with energy loss measured by a multi-sampling ionization chamber (MUSIC) and positions by PPACs. The selected ions were implanted into the CAITEN detector (Cylindrical Active Implantation Target for Exotic Nuclei), consisting of a segmented movable hollow-cylindrical-shape plastic scintillator and a stationary ring of 24 position-sensitive photomultiplier tubes (PSPMTs). γ rays were detected by three HPGe detectors. Measured $E\gamma$, $I\gamma$, implantation-decay-correlation, $\beta\gamma$ -coin, $\gamma\gamma$ -coin, $\beta\gamma$ (t). Deduced levels, J, π , half-life. Comparison with shell-model (SDPF- μ) calculations.

The decay scheme given here is incomplete since the β -delayed neutron decay branches were not measured.

³⁸Si Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0	0^{+}					
1074 2	2+	J^{π} : from Adopted Levels based on Coulomb excitation from 0 ⁺ ; (2 ⁺) from from shell-model predictions (2015St14).				
2233 <i>3</i>	(4^{+})					
3285 <i>3</i>	(3)					
3656?	(1^{-})	E(level): possibly populated by the β -decay of ground state (2015St14).				
3703 <i>3</i>	(4^{+})	E(level): strongly populated by the β -decay of (5 ⁻) isomer based on shell-model calculations (2015St14).				

[†] From $E\gamma$.

[‡] From shell-model predictions (2015St14), unless otherwise noted; same values in Adopted Levels.

 $\gamma(^{38}\text{Si})$

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
418 2	32 5	3703	(4^{+})	3285	(3)
1074 2	100 12	1074	2^{+}	0	0^{+}
1159 2	597	2233	(4^{+})	1074	2^{+}
1470 2	42 5	3703	(4^{+})	2233	(4^{+})
2211 2	20 5	3285	(3)	1074	2^{+}
3656	16 6	3656?	(1^{-})	0	0^{+}

[†] Placement of transition in the level scheme is uncertain.

³⁸Al β^- decay 2015St14

Decay Scheme

 $^{38}_{14}{
m Si}_{24}$