³⁹**P**β⁻**n decay (0.28 s) 1988Mu08**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017

Parent: ³⁹P: E=0; J^{π}=(1/2⁺); T_{1/2}=0.28 s 4; Q(β ⁻n)=6.02×10³ 11; % β ⁻n decay=26 8

 39 P-J^{π},T_{1/2}: From Adopted Levels of 39 S. T_{1/2}=0.16 s +30–10 from 1988Mu08.

³⁹P-Q(β^{-} n): From 2017Wa10.

1988Mu08: Radioactive ³⁹P isotopes were produced via fragmentation of 45 MeV/nucleon ⁸⁶Kr beam from the GANIL cyclotron on a ¹⁸¹Ta target. Fragments were separated and identified by the magnetic spectrometer LISE and implanted into a semiconductor detector telescope. Neutrons were detected by a 4π liquid scintillator. Measured β n-coin, decay time distribution. Deduced β -delayed neutron emission probability of ³⁹P, parent T_{1/2}.

 $\%\beta^{-}n=26.8$ from Adopted Levels of ³⁹P. Value from 1988Mu08 is 41 +32-16.

³⁸S Levels

E(level)	J^{π}
0	0^{+}