³⁸Ca ε decay (443.76 ms) 2015Pa32,1996An09,2015Bl02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017

Parent: ³⁸Ca: E=0; $J^{\pi}=0^+$; $T_{1/2}=443.76$ ms 35; $Q(\varepsilon)=6742.26$ 6; $\%\varepsilon+\%\beta^+$ decay=100.0 ³⁸Ca- $Q(\varepsilon)$: From 2017Wa10.

 38 Ca-T_{1/2}: From Adopted Levels of 38 Ca.

2015Pa32(also 2014Pa09): ³⁸Ca source was produced by ¹H(³⁹K,2n) reaction with a 30 MeV/nucleon ³⁹K beam provided by K500 superconducting cyclotron at Texas A&M University incident on a hydrogen gas cell. Reaction products were separated using the MARS spectrometer and nearly pure ³⁸Ca beam were implanted in a tape system, collected for 1.6 seconds, moved to a shielded area and counted for 1.54 seconds with a HPGe detector for γ rays and a scintillator for positron measurements. Measured E γ , I γ , E β , I β , $\beta\gamma$ -coin. Deduced levels, β decay branching ratios, log *ft*. Comparisons with available data and shell-model calculations.

1996An09: ³⁸Ca source was produced by bombarding a Ti target with the 1 GeV pulsed proton beam from the PS Booster at CERN. Fragments were separated with the on-line mass separator ISOLDE and directed into a moving tape system. γ rays were detected with two Ge detectors and β particles were detected with a thin cylindrical plastic scintillator surrounding the tape in a near 4π geometry. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma$ -coin. Deduced levels, β decay branching ratios, log *ft*. Comparisons with available data and shell-model calculations.

2015Bl02: ³⁸Ca was produced by projectile fragmentation of ⁴⁰Ca beam of 50.5 MeV/nucleon on a natural nickel target and separated by LISE3 separator at GANIL. Isotope identification was performed event-by-event using a plastic scintillator (0.45 mm thick) coupled to two photomultipliers used in coincidence to measure energy loss and time-of-flight. ³⁸Ca isotopes were transported after implanting on a tape to a detection setup for decay measurements. β particles were counted by a plastic scintillator (5 mm thick) and γ rays by a HPGe detector. Measured E γ , I γ , E β , I β , $\beta\gamma$ -coin. Deduced levels, β -decay branching ratios and γ -ray emission probabilities, log *ft*, parent half-life. Comparisons with shell-model calculations.

Others:

1980Wi13 (also 1980WiZQ thesis): measured $E\gamma$, $I\gamma$.

1969Ga27, 1968Ka15: measured $E\gamma$, $I\gamma$, isotopic half-life.

2006Bo11 (also 2007Ri08): mass measurement of ³⁸Ca (penning-trap method), deduced Q value.

1998Ba80: measured $\beta\gamma$ coin, search for the feeding of 2993, 0⁻ state.

1972Zi02: measured isotopic half-life.

Additional information 1.

1957Cl23: first isotopic identification and half-life measurement.

Review and analysis of superallowed β transition: 2015Ha07 (also 2006Ha12,2005Ha27,2005Ha15,2005Ha65).

This decay is important from the point-of-view of superallowed $(0^+ \text{ to } 0^+) \beta$ transition from ³⁸Ca g.s. to 130.4, 0^+ isomer in ³⁸K. The following levels and gammas listed by 1980Wi13 have not been included here since the intensities of the deexciting γ rays

were given as upper limits only but which have not been reported by 1996An09 with a better detection sensitivity: 2402 (1944 γ , I γ <1.1); 2646 (2646 γ , I γ <0.46); 3316 (3185 γ , I γ <0.29, 3316 γ , I γ <0.27); 3739 (3739 γ , I γ <0.36); 3841 (3710 γ , I γ <0.59); 4214 (1995) + 1205 (1995) +

(4084 γ , I γ <0.29); 4318 (4318 γ , I γ <0.19); 4395 (4395 γ , I γ <0.37). Total decay energy deposit of 6613 keV 9 calculated by RADLIST code is in a good agreement with the expected value of 6612

keV (all to 130 level).

³⁸K Levels

E(level) [†]	Jπ†	T _{1/2} †	Comments
0	3+		
130.2	0^+	924.4 ms 3	%IT=0.0330 43; % ε +% β ⁺ =99.9670 43 %IT from Adopted Levels.
458.5	1^{+}		*
1697.7	1^{+}		
2993?	0-		E(level): reported in 1998Ba80.
3341.1	1^{+}		
3855.8	1^{+}		

38 Ca ε decay (443.76 ms) 2015Pa32,1996An09,2015Bl02 (continued)

³⁸K Levels (continued)

E(level) [†]	$J^{\pi \dagger}$
3976.3 4174.9	$\frac{1^{+}}{(1)^{+}}$

[†] From Adopted Levels. Level energies are round-off values.

ε, β^+ radiations						
E(decay)	E(level)	Iβ+ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
(2567.36 6)	4174.9	0.004 2	0.0001 1	5.3 2	0.004 2	av Eβ=663.38 55; εK=0.03057 8; εL=0.003004 7; εM+=0.0004865 1
(2765.96 6)	3976.3	0.110 12	0.0027 3	4.05 5	0.113 12	av Eβ=753.32 37; εK=0.02136 3; εL=0.002098 3; εM+=0.0003399 5
(2886.46 6)	3855.8	0.025 12	0.00049 23	4.8 2	0.025 12	av Eβ=809.35 47; εK=0.01745 3; εL=0.001714 3; εM+=0.0002776 5
(3401.16 6)	3341.1	0.34 4	0.0032 4	4.16 6	0.34 4	av $E\beta$ =1049.25 38; ε K=0.008390 9; ε L=0.0008240 9; ε M+=0.00013345 I(ε + β ⁺): 1996An09 give 0.369 13.
(3749.26 [#] 6)	2993?	<0.0046	<2.9×10 ⁻⁵	>6.3	<0.0046	av E β =1214.54; ϵ K=0.005578; ϵ L=0.0005477; ϵ M+=8.871×10 ⁻⁵ I(ϵ + β ⁺): limit from measurement by 1998Ba80 at the 95% confidence level.
(5044.56 6)	1697.7	19.44 <i>13</i>	0.0381 5	3.426 3	19.48 <i>13</i>	av E β =1836.21 25; ε K=0.0017540 7; ε L=0.000172; ε M+=2.788×10 ⁻⁵ <i>I</i> I(ε + β ⁺): weighted average of directly measured values of 19.49 27 (2015Bl02) and 19.48 <i>I</i> 3 (2015Pa32). Note that the value of 19.99 30 in 1996An09 is deduced from calculated I β =76.5 to 130 level based on expected log <i>ft</i> =3.4875 9 for superallowed (0 ⁺ to 0 ⁺) β transitions.
(6283.76 6)	458.5	2.84 6	0.00250 6	4.80 1	2.84 6	av $E\beta = 2440.34 \ 30$; $\varepsilon K = 0.0007903 \ 3$; $\varepsilon L = 7.755 \times 10^{-5} \ 3$; $\varepsilon M + = 1.2558 \times 10^{-5} \ 5$ I($\varepsilon + \beta^+$): 1996An09 give 2.96 <i>15</i> .
(6612.06 6)	130.2	77.14 18	0.0568 6	3.487 1	77.20 18	av $E\beta = 2601.07$; $\varepsilon K = 0.0006606 \ I$; $\varepsilon L = 6.482 \times 10^{-5} \ I$; $\varepsilon M + = 1.0497 \times 10^{-5} \ 2$ $I(\varepsilon + \beta^+)$: from $100 - \Sigma(I(\varepsilon + \beta^+)$ to other levels). Note that the value of 76.52 in 1996An09 is a calculated value from expected log $ft=3.486$. Additional information 2.

[†] From Iγ intensity imbalance at each level, based on measured I(ε+β⁺) branching to 1698 level.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

³⁸Ca ε decay (443.76 ms) 2015Pa32,1996An09,2015Bl02 (continued)

 $\gamma(^{38}\text{K})$

Iγ normalization: From Σ(γ from 1698 level)-Σ(γ to 1698 level)=19.48 *13*, the adopted measured I(ε + β ⁺) branching to 1698 level (2015Pa32).

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
328.1 2	14.96 26	458.5	1+	130.2	0+	I_{γ} : weighted average of 14.89 26 (2015Pa32), 15.0 10 (1996An09), 12.6 16 (1980Wi13), and 11.8 13 (2015Bl02). The value from 2015Bl02 is deduced from absolute $I_{\gamma}(328)=2.30$ 25 relative to absolute $I_{\gamma}(1568)=19.51$ 27 measured by 2015Bl02.
1239	0.26 5	1697.7	1^{+}	458.5	1+	I_{γ} : weighted average of 0.36 <i>13</i> (2015Pa32) and 0.24 <i>5</i> (1996An09). Other: <1.0 (1980Wi13).
1567.4 2	100	1697.7	1^{+}	130.2	0^{+}	E_{v} : 1567.7 5 from 1968Ka15.
1643	0.25 15	3341.1	1+	1697.7	1+	$I_{\gamma}^{'}$: unweighted average of 0.10 7 (2015Pa32) and 0.40 5 (1996An09). Other: <1.0 (1980Wi13).
1698	0.08 4	1697.7	1^{+}	0	3+	I _γ : from 1996An09. Others: <0.08 (2015Pa32), <0.82 (1980Wi13).
2534 [@]	< 0.021	2993?	0^{-}	458.5	1^{+}	$E_{\nu}I_{\nu}$: from 1998Ba80.
2883	0.06 4	3341.1	1^{+}	458.5	1+	I_{γ} : from 2015Pa32. 2015Pa32 claim that the value of 0.7 2 from 1996An09 could be a misprint according to the γ spectrum in Fig.5 of
						1996An09. Other:<0.33 (1980Wi13).
3210.7 7	1.44 9	3341.1	1+	130.2	0+	E_{γ} : 3210 2 from 1969Ga27. I_{γ} : weighted average of 1.50 9 (2015Pa32), 1.38 <i>10</i> (1996An09), 1.39 <i>15</i> (1980Wi13), and 1.4 5 (2015Bl02). The value from 2015Bl02 is deduced from absolute $I_{\gamma}(3210)=0.28$ <i>10</i> relative to absolute $I_{\gamma}(1568)=19.51$ <i>27</i> measured by 2015Bl02.
3341 [@]	< 0.24	3341.1	1^{+}	0	3+	E_{γ}, I_{γ} : γ from 1980Wi13.
3516.4 14	0.04 3	3976.3	1^{+}	458.5	1^{+}	I _γ : from 1996An09. Others: <0.03 (2015Pa32), <0.42 (1980Wi13).
3716	0.02 1	4174.9	$(1)^{+}$	458.5	1^{+}	I_{γ} : from 1996An09. Others: <0.05 (2015Pa32), <0.45 (1980Wi13).
3725.4 19	0.13 6	3855.8	1+	130.2	0^+	I_{γ} : unweighted average of 0.07 <i>3</i> (2015Pa32) and 0.19 <i>2</i> (1996An09). Other: <0.36 (1980Wi13).
3848.0 19	0.54 5	3976.3	1+	130.2	0+	I_{γ} : weighted average of 0.51 7 (2015Pa32), 0.56 5 (1996An09), and 0.6 5 (2015Bl02). The value from 2015Bl02 is deduced from absolute $I_{\gamma}(3848)=0.12$ 9 relative to absolute $I_{\gamma}(1568)=19.51$ 27 measured by 2015Bl02. Other: <0.81 (1980Wi13).

 † From Adopted Gammas, unless otherwise noted.

[‡] Relative intensity normalized to I(1567 γ)=100.

[#] For absolute intensity per 100 decays, multiply by 0.1946 14.

[@] Placement of transition in the level scheme is uncertain.

Legend

³⁸Ca ε decay (443.76 ms) 2015Pa32,1996An09,2015Bl02

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \text{ Decay (Uncertain)} \end{array}$ $\%\varepsilon + \%\beta^+ = 100$ $Q_\varepsilon = 6742.26.6$ $\frac{38}{20}Ca_{18}$ 443.76 ms 35 ---+ 376 0.0038 $| \int_{35_{r_{q,q}}^{+} 0,0_{0}} \frac{3_{r_{q,q}}}{35_{r_{q,q}}^{+} 0,0_{0}}$ $I\beta^+$ <u>I</u>£ $\log ft$ Sc0.0 $(1)^+$ 4174.9 5.3 0.004 0.0001 3976.3 0.110 0.0027 4.05 1^{+} 3855.8 0.025 0.00049 ³³⁴¹ ^{3210, 10,47} ²⁸⁸⁵ ^{0,280} ²⁸⁸⁵ ^{0,280} 4.8 -0.00 -000-1- 1^{+} 3341.1 0.34 0.0032 4.16 2334 0___ <u>2993</u> < 0.0046 < 0.000029 > 6.3 ¹⁶⁹⁸0016 135₂₄0016 12390051 1^+ 1697.7 19.44 0.0381 3.426 1338, 2.97 1^{+} 458.5 0.00250 4.80 2.84 $\frac{0^+}{3^+}$ 130.2 924.4 ms 3 77.14 0.0568 3.487 0

³⁸₁₉K₁₉

4