³⁹K(p,d) **1974Wi17**

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017							

 $J^{\pi}(^{39}K \text{ g.s.})=3/2^+.$

1974Wi17 (also thesis by 1974RiZQ): E=35 MeV proton beam was produced from the Michigan State University cyclotron. Targets were \approx 70 µg/cm² natural potassium (93% in ³⁹K) evaporated onto 30 µg/cm² carbon backings. Reaction products were momentum-analyzed with an Engel split-pole magnetic spectrograph (FWHM=10 keV) and detected with a single-wire proportional counter and nuclear emulsions. Measured $\sigma(E(d),\theta)$. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with shell-model calculations.

³⁸K Levels

Spectroscopic factor C²S is defined in the following formula: $d\sigma/d\Omega(exp)=N\times C^2S\times d\sigma/d\Omega(DWBA)/(2j+1)$, where j=1/2 is for the transferred particle and normalization factor N=2.29.

E(level)	L [†]	C^2S^{\ddagger}	E(level)	L^{\dagger}	C^2S^{\ddagger}	E(level)	L [†]	C^2S^{\ddagger}
0	2	1.75	3859 4	0+2	0.005,0.03	5249 5	0+2	0.16,0.17
130 <i>I</i>	2	0.31	3938 <i>3</i>	1+3	0.01,0.02	5341 5		
459 <i>1</i>	0+2	0.13,0.32	3980 <i>3</i>	0+2	0.14,0.42	5449 <i>4</i>	0+2	0.004,0.15
1699 2	0+2	0.02,0.57	4176 <i>3</i>	0+2	0.02,0.03	5549 6	0+2	0.003,0.03
2404 2	0+2	0.03,1.26	4217 <i>3</i>	(1+3)	0.02,0.01	5626 4	0+2	0.06,0.05
2614 2	3	0.05	4321 4			5680 5	(1+3)	0.003,0.04
2648 2	3	0.08	4338 4			5737 4	0+2	0.009,0.26
2830 2	1+3	0.02,0.01	4405 4			5778 6		
2871 2	1+3	0.01,0.05	4459 <i>4</i>			5809 6	0+2	0.17,0.16
3317 2			4598 <i>3</i>	1+3	0.005,0.04	5856 5	0+2	0.11,0.12
3341 2	0+2	0.01,0.02	4646 4			5891 5	0+2	0.06,0.04
3432 2	0+2	0.43,0.43	4673 <i>3</i>	0+2	0.19,0.25	5944 5	3	0.08
3617 2	3	0.04	4713 4	(0+2)	0.005,0.05	5976 5	0+2	0.001,0.10
3703 4	(0+2)	0.003,0.02	4853 <i>4</i>			5991 5	0+2	0.006,0.01
3819 <i>3</i>	1+3	0.01,0.02	4998 <i>4</i>	0+2	0.005,0.02			
3842 4			5058 4	3	0.03			

[†] From comparison of measured $\sigma(\theta)$ with DWBA analysis with finite range non-local version (FRNL).

[‡] Values normalized to 1.75 for ground state; L-1/2 transfer for L=2, L+1/2 for L=1 and L+1/2 for L=3 are assumed. Quoted values are from the DWBA analysis using DFRNL calculations (FRNL with the addition of the density-dependent damping of the free p-n interaction, 1974Wi17). Values from DWBA analyses using FRNL and ADIABATIC calculations are also available in 1974Wi17.