³⁸Ar(p,n) **1996An09,1992An09**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017			

1996An09: E=135 MeV proton beam was produced from the Indiana University Cyclotron Facility (IUCF). Target was argon gas (95% enriched in 38 Ar). Neutrons were detected with fast plastic scintillators and neutron energies are measured using tof method (FWHM≈280-450 keV). Measured $\sigma(E_n,\theta)$, θ =0° to 30° (center of mass). Deduced levels, B(GT) for low-spin states from DWIA analysis. Comparisons with shell-model calculations.

1992An09 (same group as 1996An09): E=135 MeV; tof method, FWHM≈320-450 keV. Measured $\sigma(\theta)$ from 0° to 63°, deduced stretched high-spin states; DWIA analysis.

Others:

2002Or05: E=35 MeV. Measured $\sigma(\theta)$.

Threshold measurements for Q value determination of decay of 130-keV isomer of ³⁸K: 1998Ha36, 1992Ta07, 1979Bu13, 1978Ja06.

³⁸K Levels

E(level) [†]	$J^{\pi a}$	$d\sigma/d\Omega$ mb/sr $\frac{b}{}$	Comments
0‡	3+	1.5‡	
130 [‡]	0^{+}	‡	
460 ^{&}	1+	0.2	B(GT) _{pn} =0.010 5 (1996An09). d σ /d Ω mb/sr: at 12°, 0.05 at 0°. DWIA fit is poor for 1 ⁺ mainly due to the weakness of 460 peak.
170×10 ¹ 10	1+	10	$B(GT)_{pn}$ =1.73 25 (1996An09), 1.63 9 (2002Or05). $d\sigma/d\Omega$ =0.91 mb/sr (2002Or05).
340×10 ^{1#} 10	1+	1.2#	$B(GT)_{pn}=0.23 \ 4 \ (1996An09).$
350×10 ¹ 10	(7) ⁺	5.0 ^C	E(level): this peak will be unresolved from 3400 and 3900 structure reported by 1996An09, thus its existence is considered as suspect by the evaluator.
390×10 ^{1#} 10	1+	2.3#	B(GT) _{pn} =0.43 7 (1996An09). E(level): quadruplet, mostly 1 ⁺ states with some higher spin states.
530×10 ¹ 10	(6^{-})	0.13 ^c	
590×10 ¹ 10	(6-)	0.02 ^c	
670×10 ¹ & 10	1+	0.4	$B(GT)_{pn}=0.07\ 2\ (1996An09).$
970×10 ¹ @& 10			$B(GT)_{pn} = 0.03 \ l \ (1996An09).$
990×10 ¹ @ 10	1+	1.0	$B(GT)_{nn}=0.17 \ 3 \ (1996An09).$
1020×10 ¹ @ 10	1+	0.7	$B(GT)_{pn} = 0.13 \ 2 \ (1996An09).$

[†] From 1996An09 for J=0⁺ and 1⁺ states; from 1992An09 for 6⁻ and 7⁺ levels.

 $^{^{\}ddagger}$ g.s. and 130 level are unresolved, $\sigma(\theta)$ is fitted with 0^+ and 3^+ .

^{# 3400} and 3900 levels are unresolved.

^{@ 9700, 9900} and 10200 are not fully resolved.

[&]amp; Weak peak

^a From Adopted Levels for levels up to 3500, above this energy the assignments are from 1996An09 based on cross section in (p,n) and identification of transition as GT transition.

^b Read from $\sigma(\theta)$ figures 2 and 3 of 1996An09, values correspond to θ =0°, unless otherwise stated.

^c Read from $\sigma(\theta)$ figure 3 of 1992An09, values correspond to θ =12°.