³⁸S β⁻ decay (170.3 min) 1986Wa22,1972Vi11,1971En01

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017		

Parent: ³⁸S: E=0; $J^{\pi}=0^+$; $T_{1/2}=170.3 \text{ min } 7$; $Q(\beta^-)=2937 \ 7$; $\%\beta^-$ decay=100.0

 38 S-T_{1/2}: weighted average of 172 min *I* (1958Ne10), 169.6 min 7 (1971En01), and 170.0 min 8 (1972Vi11); the same value is adopted in Adopted Levels of 38 S.

1986Wa22: ³⁸S source ions were produced by bombardment of 81% enriched ³⁶S by 3.1 MeV triton beam. γ rays were detected with a Compton suppression spectrometer (CSS) consisting of a NaI(Tl) annulus and an intrinsic coaxial Ge detector. Measured E γ , I γ . Deduced levels, J, π , decay branching ratios. Comparisons with available data and shell-model calculations.

1972Vi11: ³⁸S source was produced via ⁴⁰Ar(γ ,2p). γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , γ (t). Deduced levels, parent T_{1/2}.

1971En01: ³⁸S source was produced by bombarding Ag₂S targets with 3.26 MeV tritons provided by the BNL 3.5-MV Van de Graaff. γ rays were detected with Ge(Li) and NaI(Tl) detectors and β particles were detected with a surface-barrier detector.

Measured E γ , I γ , E β , I β , $\gamma\gamma$ -coin, $\beta\gamma$ -coin, $\gamma(t)$. Deduced levels, J, π , decay branching ratios, parent T_{1/2}.

1958Ne10: measured $E\gamma$, $I\gamma$, $T_{1/2}$, $E\beta$, $\gamma\gamma$, $\beta\gamma$ coin.

Total decay energy deposit of 2936 keV 58 calculated by RADLIST code is in agreement with the expected value of 2937 keV 7 (2017Wa10), indicating the completeness of the decay scheme.

³⁸Cl Levels

E(level) ^{‡#}	J^{π}	Comments
0.0 755.431 <i>11</i>	$\frac{2^{-}}{3^{-}}$	E(level): from Adopted Levels.
1692.68 8 1745.81 4 1941.998 14	(1,2) $0^{-},1^{-}$ 1^{+}	
2751.09 7	1+	

[†] From Adopted Levels.

[‡] From a least-squares fit to γ -ray energies, unless otherwise noted.

[#] Additional information 1.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(186 7)	2751.09	1.44 6	4.13 6	av $E\beta = 54.9\ 24$
(995 7)	1941.998	86.6 19	4.95 2	av $B\beta=3/2.731$ I β^- : others: 83.4 30 from 1986Wa22 and 83 2 from 1971En01.
(1191 7)	1745.81	2.46 10	6.80 2	av E β =458.5 31
(1244 7)	1692.68	0.188 18	8.00 5	av E β =482.1 32
(2937 7)	0.0	9.3 20	9.25 ¹ <i>u</i> 10	av $E\beta = 1291.2 \ 34$
				$I\beta^-$: deduced by the evaluator based on ³⁸ S- ³⁸ Cl sequential decay in equilibrium using measured intensity of 2167γ in ³⁸ Ar from ³⁸ Cl decay and total γ feedings to g.s. in ³⁸ Cl from ³⁸ S decay in 1986Wa22, adopted $I\beta$ (g.s.)=56.0% 6 for ³⁸ Cl to ³⁸ Ar decay, and adopted halflives of ³⁸ S and ³⁸ Cl. Other: 12.7 32 deduced by 1986Wa22 and 14.2 20 by 1971En01 based on $I\beta$ (g.s.)=57.6% 13 from 1968Va06 for ³⁸ Cl to ³⁸ Ar decay.

[†] Deduced from I γ intensity imbalance at each level for excited states.

[‡] Absolute intensity per 100 decays.

³⁸S-Q(β^{-}): From 2017Wa10.

³⁸S β⁻ decay (170.3 min) 1986Wa22,1972Vi11,1971En01 (continued)

$\gamma(^{38}\text{Cl})$

Iy normalization: From $\Sigma(Iy \text{ to g.s.})=90.7 \ 20$, based on 9.3 $20 \ \beta^-$ feeding to g.s. (see comments for I β (g.s.)).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
196.19	0.10 3	1941.998	1+	1745.81	0-,1-	% $I\gamma=0.09 \ 3$ E_{γ} : from level-energy difference.
755.425 [‡] 11	0.017 [#] 3	755.431	3-	0.0	2^{-}	%Iy=0.015 3
936.9 [‡] <i>3</i>	0.017 [#] 3	1692.68	$(1,2)^{-}$	755.431	3-	%Iγ=0.015 3
1692.64 8	0.20 2	1692.68	$(1,2)^{-}$	0.0	2-	%Iy=0.173 18
1745.77 4	2.94 9	1745.81	$0^{-}, 1^{-}$	0.0	2-	%Iy=2.54 10
1941.945 <i>14</i>	100.0	1941.998	1+	0.0	2-	E_{γ} : other: 1746.2 4 from 1971En01. % I_{γ} =86.5 20 E_{γ} : other: 1941.7.2 from 1971En01.
2750.98 7	1.66 6	2751.09	1^{+}	0.0	2-	$\%$ I γ =1.44 6

[†] From 1986Wa22, unless otherwise noted. Intensities in 1986Wa22 are taken by authors from weighted averages of measured values in 1986Wa22, 1972Vi11 and 1971En01; the quoted values here are the original values from 1986Wa22 divided by 100.

^{\ddagger} From Adopted Gammas, γ intensity is below the detection threshold in studies of 1986Wa22 and 1972Vi11. E γ not used in least-squares fitting procedure.

[#] Values are obtained by scaling $I\gamma(1692.64)=0.20\ 2$ using $I\gamma(936.9\gamma)/I\gamma(1692.64\gamma)=8.3\ 14/100.0\ 24$ in Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.865 20.

Decay Scheme