Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152,1 (2018)	30-Sep-2017

 $Q(\beta^{-}) = -5914.07 \ 4$; $S(n) = 11838.47 \ 28$; $S(p) = 10242.25 \ 20$; $Q(\alpha) = -7208.05 \ 20 \ 2017Wa10$

S(2n)=20625.92 20, S(2p)=18628.63 27 (2017Wa10).

Isotope shifts, charge radii measured: 2005B133, 2003Sa20, 2000Ga58, 1996K104, 1988M030, 1986Mu06.

Mass measurement: 2002He23 (Penning-trap method).

Measurement of isotope abundance ratio: 1995Ya15.

Other measurements:

⁴⁰Ca(⁴⁰Ca,X) E=50 MeV/nucleon: 2007Fa17: 3-phonon giant resonances. GANIL facility using SPEG spectrometer and INDRA 4π array of CsI(Tl) detectors. Measured γ, protons and α particles from decay of giant resonances. Population of g.s., and levels near 2200 keV and 4000 keV from decay of GQR in ⁴⁰Ca to ³⁸Ar via two-proton decay.

⁴¹Ca(n, α) E=0.6-50 keV: 2007DeZR: measured cross section and Γ .

⁴¹Ca(n, α) E<80 keV: 2012Ve01: measured cross section.

Structure calculations (selected references): 2004Sv02 (high-spin levels), 2003Be53 (high-spin levels), 2003Se17 (RPA calculations), 1994Mi19 (levels, moments, etc.), 1970Sk01 (even-parity states).

Calculated M1 strength distributions with large-scale shell-model calculations in *sd* and *pf* shells: 2007Li56 (also 2007Li37). Comparison of experimental and theoretical g factors: 2007Be42.

³⁸Ar Levels

Cross Reference (XREF) Flags

A	38 Cl β^- decay (37.230 min)	м	$^{35}Cl(\alpha,p\gamma)$	Y	40 Ca(π^{-} ,pn γ)
В	38 K ε decay (7.651 min)	N	$^{36}Ar(t,p)$	Z	40 Ca(μ^- , ν pn γ)
С	38 K ε decay (924.4 ms)	0	36 Ar(α , ² He)	Other	s:
D	$^{12}C(^{34}S, ^{8}Be\gamma)$	Р	37 Cl(p, γ):resonances	AA	$^{40}Ca(n, {}^{3}He)$
Ε	$^{16}O(^{28}Si,\alpha 2p\gamma)$	Q	37 Cl(3 He,d)	AB	40 Ca(P,3p γ)
F	$^{24}Mg(^{16}O,2p\gamma)$	R	37 Ar(n,n),(n, α):resonances	AC	$^{40}Ca(^{14}C,^{16}O)$
G	24 Mg(24 Mg, $2\alpha 2p\gamma$)	S	38 Ar(e,e')	AD	$^{40}Ca(^{18}O,^{20}Ne)$
Н	27 Al(14 N,n2p γ)	Т	³⁹ K(n,d)	AE	41 K(p, α)
I	$^{27}\text{Al}(^{16}\text{O},\alpha\text{p}\gamma)$	U	39 K(P,2p γ)	AF	$^{42}Ca(d, ^6Li)$
J	$^{34}S(\alpha,\gamma)$:resonances	V	39 K(d, ³ He)	AG	42 Ca(3 He, 7 Be)
K	$^{34}S(^{7}Li,t)$	W	39 K(t, α)		
L	35 Cl(α ,p)	X	40 Ar(p,t)		

Isospin T=1 (triplet) states

³⁸ Ar	³⁸ Ca		$\Delta E(1)$	-	³⁸ K	ΔE(2)
0,0+	0,0+		130,0+	T=1		
2168,2+	$2213, 2^+$	+45	2401,2+	T=1	+103,+58	
3378,0+	3084,0+	-294				
3810,3-	3703,3-	-107				
3936,2+	$3684, 2^+$	-252				
$\Delta E(1) = E(3)$	⁸⁸ Ca)-E(³⁸ A	.)				
$\Delta E(2) = E(3)^{3}$	³⁸ K)-E(³⁸ Ar)	-130,	$E(^{38}K)$)-E(³	⁸ Ca)-130	
	Isospin]]=2 (qu	intuplet) st	ates		
³⁸ Cl	3	⁸ Ar			ΔE	
0,2-	10631	,(2 ⁻),	T=2			
671,5-	11302	.,5 [−] &	11308,5 ⁻ T=2	2.	+1,+7	
755,3-	11351	.,3 ⁻ &	11355,3 ⁻ T=2	2.	-34,-30	
1309,4-	11928	3,4 ⁻ T=	2	-	-11	
$\Delta E = E(^{38}Ar)$)-E(³⁸ Cl)-1	0630				

E(level) [†]	J ^{π‡}	$T_{1/2}^{\#}$	XREF		Comments
0.0	0+	stable	ABCDEFGHIJKLMNOPQ	TUVWXYZ	XREF: Others: AA, AB, AC, AD, AE, AF, AG J^{π} : no hyperfine structure observed in optical spectroscopy (1953Me73). $^{1/2}=3.4028$ fm 19 (2013An02 evaluation). Additional information 1
2167.472 12	2+	0.458 ps 21	AB DEFGHIJ LMNOPQ	TUVWXYZ	XREF: Others: AB, AC, AD, AE, AF, AG μ =+0.48 24 (2006Sp01) E(level): 2167.60 6 from (p, γ):resonances. J ^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ ; 2167.4 γ E2 to 0 ⁺ . T _{1/2} : weighted average of 0.492 ps 21 from (³⁴ S, ⁸ Be γ), 0.444 ps 25 from (¹⁶ O, α p γ), 0.45 ps 2 from (α ,p γ), and 0.37 ps 5 from (p, α). μ : transient magnetic field and DSA in ¹² C(³⁴ S, ⁸ Be) reaction (2006Sp01). See also 2014StZZ compilation. Additional information 2.
3376.9 3	0+	22.8 ps 15	A D H JKLMN PQ	VXZ	XREF: Others: AC, AE, AF, AG E(level): 3377.36 23 from (p,γ) :resonances. J^{π} : L(t,p)=L(p,t)=0 from 0 ⁺ ; E0 transition to 0 ⁺ . T _{1/2} : from recoil-distance method in $(\alpha,p\gamma)$. Other: >0.35 ps in (p,γ) :resonances. Additional information 3.
3810.18 ^b 3	3-	56 fs <i>14</i>	AB DEFGHIJ LMNOPQ	U WXYZ	XREF: Others: AB, AE, AF, AG XREF: W(3854?). E(level): 3810.09 <i>11</i> from (p,γ):resonances. J^{π} : L(p,t)=3 and L(t,p)=3,4 from 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁺ ; 1642.7γ ΔJ=1 E1(+M2) to 2 ⁺ . T _{1/2} : weighted average of 52 fs <i>14</i> in (α,pγ) and 74 fs 28 in (p,γ). Additional information 4.
3936.5 [@] 4	2+	43 fs 5	AB DE H JKLMN PQ	VWXYZ	XREF: Others: AE, AF, AG μ =+2.2 22 (2006Sp01) XREF: W(3961). E(level): 3936.61 18 from (p, γ):resonances. J ^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ ; L(³ He,d)=L(d, ³ He)=0 from 3/2 ⁺ . T _{1/2} : weighted average of 47 fs 6 in (³⁴ S, ⁸ Be γ), 32 fs 13 in (α , $\gamma\gamma$), 33 fs 10 in (p, γ) and 54 fs 15 in (α , γ):resonances. μ : transient magnetic field and DSA in ¹² C(³⁴ S, ⁸ Be) reaction (2006Sp01). See also 2014StZZ compilation.
4479.98 8	4-	0.97 ps +25-20	DEFGHIJ LMN PQ	ΥZ	XREF: Others: AE E(level): 4479.92 <i>14</i> from (p,γ) :resonances. J ^{π} : L(³ He,d)=3 from 3/2 ⁺ ; J=4 from $\gamma(\theta)$ in (p,γ) :resonances; 669.8 γ Δ J=1 M1(+E2) to 3 ⁻ . T _{1/2} : weighted average of 0.93 ps 20 in (¹⁶ O, $\alpha p\gamma$) and 1.3 fs +8-3 in $(\alpha, p\gamma)$. Other: >0.42 ps in (p,γ) :resonances. Additional information 6.
4565.5 ^{&} 5	2+	36 fs 3	AB DE J LM PQ	VW Z	XREF: Others: AE E(level): 4565.5 2 from (p,γ) :resonances. J^{π} : 1 ⁺ ,2 ⁺ from L(d, ³ He)=L(³ He,d)=0 from 3/2 ⁺ ; 1 ⁺ is ruled out by 755.3 γ to 3 ⁻ and RUL. T _{1/2} : weighted average of 35 fs 3 in (³⁴ S, ⁸ Be γ), 51

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF		Comments
					fs 14 in $(\alpha, p\gamma)$ and 38 fs 11 in (p, γ) :resonances. Other: <62 fs in (α, γ) :resonances. Additional information 7.
4585.87 ^b 8	5-	132 ps 4	DEFGHI LMNOPQ	ΧZ	XREF: Others: AE E(level): 4585.2 4 from (p,γ) :resonances. J^{π} : L(p,t)=5 from 0 ⁺ ; L(³ He,d)=3 from 3/2 ⁺ ; 775.7 γ E2 to 3 ⁻ and 105.9 γ M1(+E2) to 4 ⁻ . T ₁₀ : weighted average of 136 ps 7 in (¹⁶ O 2px), 130
4709.3 10	0+	1.7 ps +21-7	J LMN P	XYZ	ps 4 in (¹⁴ N, n2py), 135 ps 4 in (¹⁶ O, α py), and 128 ps 6 in (α , py). Other: >0.35 ps in (p, γ):resonances. Additional information 8. XREF: Others: AE
	0				XREF: X(4730). E(level): 4710.3 2 from (p,γ) :resonances. J^{π} : L(t,p)=L(p,t)=0 from 0 ⁺ . T _{1/2} : from $(\alpha,p\gamma)$. Other: >0.42 ps in (p γ):resonances
4877.0 <i>3</i>	3-	34 fs 8	J LMN PQ	W	XREF: Others: AE E(level): 4876.87 <i>14</i> from (p,γ) :resonances. J ^{π} : 2709.4 γ E1+M2 γ to 2 ⁺ and 1066.8 γ M1(+E2) γ to 3 ⁻ ; L(t,p)=3,4 from 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁺ ; J=3 from $\gamma(\theta)$ in (p,γ) :resonances. T _{1/2} : weighted average of 53 fs <i>14</i> in $(\alpha, p\gamma)$ and 31 fs 6 in (p, γ)
5083.6 10	(2)-	39 fs 10	J LMN PQ		Additional information 9. XREF: Others: AE E(level): 5084.3 5 from (p,γ) :resonances. J^{π} : 1 ⁻ ,2 ⁻ ,3 ⁻ from L(³ He,d)=1+3 from 3/2 ⁺ ; J=2 is proposed in $(\alpha,p\gamma)$ and (p,γ) :resonances. But 1 ⁻ and 3 ⁻ are not completely ruled out. T _{1/2} : weighted average of 57 fs 21 in $(\alpha,p\gamma)$ and 35
5157.3 2	2+	23 fs 7	B J LMN PQ	VWX Z	The form (p,γ) . XREF: Others: AE XREF: N(5170). Additional information 10. J^{π} : L(t,p)=L(p,t)=2 from 0 ⁺ ; L(d, ³ He)=L(³ He,d)=0 from 3/2 ⁺ . T _{1/2} : weighted average of 28 fs 13 in $(\alpha,p\gamma)$ and 22 fs 7 in (p,γ) :resonances
5349.4 [@] 3	4+	0.14 ps 4	B E H KLMN P	ΨZ	XREF: Others: AD, AE XREF: W(5376)AD(5400?). E(level): 5349.5 2 from (p,γ) :resonances. J^{π} : J=4 from $p\gamma(\theta)$ in $(\alpha, p\gamma)$; 3182.2 $\gamma \Delta J$ =2 E2 to 2 ⁺ ; 1539 γ to 3 ⁻ . T _{1/2} : weighted average of 0.14 ps 4 in $(\alpha, p\gamma)$ and
5513.3 4	3-	0.19 ps 6	J LMN PQ		0.15 ps 5 in (p,γ) :resonances. XREF: Others: AD, AE XREF: AD(5400?). E(level): 5513.38 <i>16</i> from (p,γ) :resonances. J ^{π} : L(t,p)=3,4 from 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁺ . T _{1/2} : weighted average of 0.19 ps 6 in $(\alpha,p\gamma)$ and 0.19 ps 7 in (p,γ) .
5552.21 18	1+,2+	11 fs 6	B J M PQ	VW Z	XREF: Others: AE Additional information 11.

³⁸Ar Levels (continued)

E(level) [†]	J#‡	T _{1/2} #	XREF	Comments
5594.6 6	2+	60 fs <i>18</i>	JNPO	J^{π} : L(³ He,d)=L(d, ³ He)=0 from 3/2 ⁺ . T _{1/2} : from (p, γ):resonances. Other: <31 fs in (α ,p γ). XREF: Others: AE, AG
	_			Additional information 12. J^{π} : L(t,p)=2 from 0 ⁺ ; 2217.6 γ and 5594.2 γ to 0 ⁺ . L(³ He,d)=1+3 from 3/2 ⁺ (suggesting 1 ⁻ ,2 ⁻ ,3 ⁻) is inconsistent.
5658.61 ^c 22	5-	29 fs 5	EF H LMNOPQ	XREF: Others: AE E(level): 5658.1 5 from (p,γ) :resonances. J^{π} : 1072.8 $\gamma \Delta J=0$ M1(+E2) to 5 ⁻ ; L(³ He,d)=3 from 3/2 ⁺ . T _{1/2} : weighted average of 64 fs 28 in $(\alpha, p\gamma)$
				and 28 fs 4 in (p,γ) :resonances. Other: <0.7 ps in ²⁷ Al(¹⁴ N,n2p γ). Additional information 13.
5733.9 5	1-	<4 fs	J N PQ W	XREF: Others: AE Additional information 14. J^{π} : 1,2 ⁺ from 5733 γ to 0 ⁺ and RUL; 2 ⁺ is ruled out by L(³ He,d)=1 or 1+3 from 3/2 ⁺ . But L(t,p)=2 for 5740 group (suggesting 2 ⁺) is inconsistent.
5824.9 2	3-	0.24 ps +62-14	JLNPQ W	XREF: Others: AE, AG Additional information 15. J^{π} : L(t,p)=3,4 from 0 ⁺ ; L(³ He,d)=1+3 from $3/2^+$: 3657 μ to 2 ⁺ and 1345 μ to 4 ⁻
5857.5 2	(2)-	15.2 fs <i>35</i>	L PQ w	XREF: Others: AE Additional information 16. J^{π} : L(³ He,d)=3 from 3/2 ⁺ gives 1 ⁻ to 5 ⁻ ; 981 γ to 3 ⁻ and RUL require $\Delta J < 2$, since $\Delta J = 2$ would require an unreasonably large B(E2) or B(M2) value; 3690 γ to 2 ⁺ disfavors 4 ⁻ ; J=2 is favored by 5547 γ from the 10631,(2 ⁻) level with T=(2), possible IAS of ³⁸ Cl g.s., $J^{\pi}=2^{-}$. But 3 ⁻ is not completely ruled out
5974.8 2	(0 ⁺ to 3 ⁻)	>1.7 ps	Р	XREF: Others: AE Additional information 17. J^{π} : 818y, 1409y, 2038y, 3807y to 2 ⁺ , 5577 4y from (1) ⁻
6041.8 <i>3</i>	(3 ⁻ ,4 ⁺)	58 fs 12	LMn P w	XREF: Others: AG Additional information 18. J^{π} : 1456y to 5 ⁻ , 2232y to 3 ⁻ , 5336.9y from (2 ⁺).
6053.2 ^{&} 4	(4 ⁺)	71 fs <i>14</i>	E LMn P w	XREF: Others: AE E(level): 6053.1 <i>3</i> from (p,γ) :resonances. J^{π} : $(3,4^+)$ from 704 γ to 4 ⁺ , 1573 γ to 4 ⁻ , 1488 γ and 2116 γ to 2 ⁺ ; (4 ⁺) is favored by band structure
6209.4 6	4-	74 fs 23	l n PQ	XREF: Others: AE E(level): 6210.0 <i>10</i> from (p,γ) :resonances. J ^{<i>n</i>} : 1729 $\gamma(\theta)$ in (p,γ) :resonances gives J=4; L(³ He d)=3 from 3/2 ⁺
6213.8 <i>3</i>	(2+)	5.4 fs <i>31</i>	JlnP	XREF: Others: AE

³⁸Ar Levels (continued)

E(level) [†]	J ^{π‡}	T _{1/2} #	XREF	Comments
6249.9 <i>3</i>	2+	>111 fs	lm p	Additional information 19. J^{π} : 6213 γ to 0 ⁺ , 5517.0 γ from (4 ⁺); primary 4959 γ and 5054 γ from 3 ⁻ in (p, γ):resonances. X XREF: Others: AE , AG XREF: AE(6259). Additional information 20. J^{π} : 901 γ to 4 ⁺ and 2873 γ to 0 ⁺ ; primary 4952 γ
6276.1 <i>4</i>	4+	81 fs <i>35</i>	l N P	from 1 ⁻ in (p, γ):resonances. X XREF: Others: AD, AE XREF: N(6287)X(6320)AD(6300)AE(6286). Additional information 21. J ^{π} : L(p,t)=4 from 0 ⁺ ; L(t,p)=3,4 from 3/2 ⁺ ; 2340 γ
6338.6 5	1-,2-,3-	<13 fs	L PQ	and 4108 γ to 2 ⁺ , 927 γ to 4 ⁺ , 1796 γ to 4 ⁻ . XREF: Others: AE XREF: AE(6347). Additional information 22.
6353.5 4	1-	3.6 fs 14	PQ	J ^{<i>n</i>} : L(³ He,d)=1+3 from 3/2 ⁺ . XREF: Others: AE XREF: AE(6360). Additional information 23. J ^{π} : L(³ He,d)=1+3 from 3/2 ⁺ gives 1 ⁻ ,2 ⁻ ,3 ⁻ ; 6353 γ
6408.32 10	6+	1.0 ps <i>3</i>	EFGH LMNOP	to 0 ⁺ and RUL rules out 2 ⁻ and 3 ⁻ . XREF: Others: AE XREF: AE(6420). J ^{π} : J=6 from $\gamma(\theta)$ in (¹⁶ O,2p γ) and (¹⁴ N,n2p γ); 1822 γ Δ J=1 E1(+M2) to 5 ⁻ . T _{1/2} : from ²⁴ Mg(¹⁶ O,2p γ). Other: <1.4 ps from
6476.6 19	(0 ⁺ to 3 ⁻)	>0.17 ps	l n Pq	²⁷ Al(¹⁴ N,n2p γ). XREF: Others: AE Additional information 24. J ^{π} : 1911 γ to 2 ⁺ ; primary 4725 γ from 1 ⁻ in
6485.4 7	(1 ⁻ ,2,3 ⁻)	29 fs 22	Jln Pq	(p, γ):resonances. XREF: Others: AE Additional information 25. J ^{π} : 4318 γ to 2 ⁺ , 2675 γ to 3 ⁻ , 4829 γ from 1 ⁻ . L(³ He,d)=1 for 6486 <i>10</i> group gives (0,1,2,3) ⁻ for any of the three levels near this energy
6495.8 <i>3</i>	(2 ⁻ ,3 ⁻)	10 fs 4	Pq	XREF: Others: AE Additional information 26. J^{π} : 2016 γ to 4 ⁻ , 2559 γ to 2 ⁺ , 5056.4 γ from (1) ⁻ .
6520 6574.3 <i>5</i>	2+ 1-	<3.5 fs	N PQ	X J^{π} : L(p,t)=2 from 0 ⁺ . XREF: Others: AE XREF: AE(6590). Additional information 27. J^{π} : L(³ He,d)=1 or 1+3 from 3/2 ⁺ ; 6574 γ to 0 ⁺ and PUL But L (t p)=3.4 is inconsistent with 1 ⁻
6601.59 <i>23</i>	4-	12.5 fs 21	J 1M PQ	XREF: Others: AE XREF: Q(6593)AE(6610). E(level): 6601.18 19 from (p,γ) :resonances.
6621.6 4	(1 ⁻ ,2,3 ⁻)	36 fs 12	1 PQ	$J = 2122\gamma \Delta J = 0 \text{ MI(+E2) to 4 ; E(-He,d)=3.}$ XREF: Others: AE XREF: Q(6611)AE(6630). Additional information 28. J ^{\pi} : 2056\gamma to 2 ⁺ , 2811\gamma to 3 ⁻ , 4930.7\gamma from (1) ⁻ . L(³ He d)=(2) from 3/2 ⁺ suggests \pi=+.
6674.4 <i>3</i>	5-	13.7 fs 35	EF 1Mn PQ	XREF: Others: AE

³⁸Ar Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XI	REF	Comments
6681.6 5	(0,1,2)	53 fs 19		n P	XREF: ae(6680). E(level): 6673.5 6 from (p,γ) :resonances. J^{π} : 2089 $\gamma \Delta J$ =0 to 5 ⁻ ; L(³ He,d)=3 from 3/2 ⁺ . XREF: Others: AE XREF: ae(6680). Additional information 29
6772.7 5	1-	<2.8 fs		PQ	J^{π} : 948 γ to 1 ⁻ and RUL requires $\Delta J < 2$. XREF: Others: AE Additional information 30. J^{π} : 6772 γ to 0 ⁺ gives (1,2 ⁺); L(³ He,d)=1 from 3/2 ⁺
6824.0 <i>15</i>	(2+,3-)	17 fs 6		n Pq	and RUL rules out 1^+ and 2^+ . XREF: Others: AE Additional information 31. E(level): unresolved doublet at 6824 keV in (p, γ):resonances.
6824.1 <i>15</i>	(0 ⁺ to 4 ⁺)			n Pq	J^{π} : 4656y to 2 ⁺ , 3014y to 3 ⁻ , 4728.3y from (1) ⁻ , 4906.9y from (4 ⁺); L(³ He,d)=1 suggests (0 to 3) ⁻ for 6824.0 and/or 6824.1. XREF: Others: AE Additional information 32. E(level): unresolved doublet at 6824 keV in (p, γ):resonances. J^{π} : 2888y to 2 ⁺ . L(t,p)=2 for a 6838 <i>15</i> group suggests 2 ⁺ for any of the levels from 6824 to
6846 2	(0 ⁻ to 4 ⁻)		I	In	6852. XREF: Others: AE E(level): from $(\alpha, p\gamma)$.
6852 1	(1,2 ⁺)		1	In P	J^{α} : 1762 γ to (2) ⁻ . XREF: Others: AE E(level): from (α ,p γ).
6869.9 5	(2 ⁻ ,3,4 ⁺)		LI	I P	J^{++} 34/39 to 0 ⁺ . XREF: Others: AE Additional information 33. M_{\pm} 47002 to 2 ⁺ . 1002 to 2 ⁻ . 5057 7. from 4 ⁻ .
6903.8 9	2-,3-	6.2 fs 21	1	I PQ	J^{π} : L(³ He,d)=1+3 from 3/2 ⁺ ; 2967 γ to 2 ⁺ and 2424 γ to 4 ⁻
6947.9 9	(2 ⁺)		1	IN P	Additional information 35.
7046 2	(3 ⁻ ,4 ⁺)		LI	I P	J ⁻¹ : 35 /1γ to 0 ⁻¹ ; L(t,p)=(2) from 0 ⁻¹ . E(level): weighted average of 7047 2 from (α,pγ) and 7045 2 from (p,γ):resonances. J ^π : 4878γ to 2 ⁺ , 2566γ to 4 ⁻ ; primary γ 4256 from
7060 15	0+		1	N	5 ⁻ in (p,γ) :resonances. XREF: 1(7070). E(level): from (t,p) .
7070.19 24	(6)-	51 fs <i>14</i>	EF I	Ι	J^{π} : 2483.9 γ M1+E2 to 5 ⁻ and 437.8 γ from 7 ⁻ favors $J^{\pi}(7070)=6^-$. Assignment of $J^{\pi}=5^-$ from $\gamma(\theta)$ and RUL in $(\alpha, p\gamma)$ is inconsistent with $J^{\pi}=6^-$ from $\gamma(DCO)$ in (²⁸ Si, α 2p γ). It should be noted that 2483.9 γ (DCO) in (²⁸ Si, α 2p γ) are also marginally consistent with $\Delta J=0$ giving 5 ⁻ as in $(\alpha, p\gamma)$ and also with $\Delta J=2$ giving 7 ⁻ , the latter ruled out by 2590 γ to 4 ⁻ and RUL. In the opinion

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XI	REF		Comments
						of the evaluator, the spin of this level needs reinvestigation. Here the evaluator have adopted $J^{\pi}=(6)^{-}$, but $J^{\pi}=5^{-}$ can not be ruled out.
7100.8 5	(1 ⁻ to 4 ⁺)	12 fs 5	lM	ΙP	v	T _{1/2} : from $(\alpha, p\gamma)$. XREF: l(7070)v(7120). Additional information 36.
7100 1	(1- , , , , , , , , , , , , , , , , , , ,					J^{π} : 4933 γ to 2 ⁺ , 4072 γ from 3 ⁻ . L(d, ³ He)=2 gives 0 ⁺ ,1 ⁺ ,2 ⁺ ,3 ⁺ for 7100.8 and/or 7128.
/128 /	(1 to 4')		г	l	v	XREF: $v(7120)$. E(level): from (α ,py). J ^{π} : 4960 γ to 2 ⁺ and 3318 γ to 3 ⁻ .
7181 2	(1,2 ⁺)		11	I		XREF: $l(7192)$. E(level): from $(\alpha, p\gamma)$.
7192.2 5	(2 ⁻ ,3,4)		11	I P		J^{*} : 7180 γ to 0 ⁺ . Additional information 37. I^{π} : 2315 γ to 3 ⁻ 2712 γ to 4 ⁻ 4319 2 γ from (2)
7233.8 17	(1 ⁻ to 4 ⁺)		I	I P		E(level): weighted average of 7235 2 from $(\alpha, p\gamma)$ and 7233.0 17 from (p, γ) :resonances.
7236 2	(2+)		P	IN P		J ^{<i>x</i>} : 5066 γ to 2 ⁺ , 4189.9 γ from (3 ⁻). XREF: N(7249). E(level): weighted average of 7234 2 from (α ,p γ) and 7238 2 from (p, γ):resonances. I ^{π} : 7235 γ to 0 ⁺ : I (t p)=2 from 0 ⁺ for a level at
7288.32 [@] 24	6+	27 fs 13	E KIN	ΙP		7249. J ^{π} : 1939.4 γ Δ J=2 E2 to 4 ⁺ ; 879.9 γ to 6 ⁺ and
						2704 γ to 5 ⁻ . T _{1/2} : weighted average of 53 fs 20 in (α ,p γ) and 21 fs 10 in (p, γ):resonances.
7289.6 8	(3 ⁻ ,4 ⁺)	>55 fs	11	IN P		XREF: N(7306). Additional information 38.
7334 2	(1 ⁻ to 4 ⁺)		ľ	In P		J ^{π} : L(t,p)=3,4 from 0 ⁺ for a level at 7306. E(level): weighted average of 7335 <i>1</i> from (α ,p γ), 7336 <i>15</i> from (t,p), and 7329 <i>2</i> from (p, γ):resonances.
7350 1	(3 ⁻ ,4 ⁺)		LI	In P		J ^π : 3524γ to 3 ⁻ and 5166γ to 2 ⁺ . XREF: n(7336). E(level): from (α ,pγ).
7365 2 7370 2	(1 ⁺)		P	P I P	S	J^{π} : 1100 γ to 2 ⁺ and 2764 γ to 5 ⁻ . Additional information 39. XREF: S(7381).
						J^{π} : 7369 γ to 0 ⁺ ; M1 excitation in (e,e') for a level at 7381.
7376 <i>1</i> 7431.0 <i>3</i>	$(2^+,3,4^+)$ $(2^-,3,4^+)$	13 fs 8	r r	I I P		J ^{π} : 1126 γ to 2 ⁺ and 2027 γ to 4 ⁺ . Additional information 41. J ^{π} : 5263 γ to 2 ⁺ ; primary 3742 γ and 4375 γ from
7452 2	(1 ⁻ to 4 ⁺)		LN	ΙP		3^{-} and weak 4497 γ from 4^{-} . E(level): weighted average of 7452 2 from (α ,p γ) and 7451 2 from (p, γ):resonances.
7485 3	(3 ⁻ ,4 ⁺)		ľ	IN		J^{π} : 2575 γ to 3 ⁻ and 5284 γ to 2 ⁺ . E(level): from (α ,p γ).
7491.3 ^{&} 5	(6 ⁺)		E			$J^{\pi}: 1820\gamma$ to 5 ⁻ , 2142 γ to 4 ⁺ ; 2046 γ from 8 ⁽⁺⁾ ;
7497 1	(3,4,5 ⁻)		J	I P		XREF: P(?).

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XREF	Comments
					E(level): from $(\alpha, p\gamma)$.
7508 12b 22	7-	> 42 fo	EE U	тм	$J^{-1}: 30177 \text{ to } 4, 50877 \text{ to } 5$ and $144477 \text{ to } (4)$.
7508.12* 22	7	242 18	ЕГ П	LII	J^{*} . 2922.07 $\Delta J = 2 E2$ 7 to J^{*} , 11007 to 0^{*} . The from (α m): <1.4 ps in $2^{7} \Delta I (^{14}N n^{2}m)$
7528 2	(3 ⁻ to 7 ⁻)			Mn	XREF: n(7544).
					E(level): from $(\alpha, p\gamma)$.
7520.2	(2, 4, 5)	$12 f_{0} 24$		Mm D	J^{π} : 1869 γ and 2942 γ to 5 ⁻ .
1559 2	(3,4,3)	43 18 24		nn P	7544 15 from (t,p), and 7538 2 from
					$(\mathbf{p}, \boldsymbol{\gamma})$:resonances.
76789 8	$(1, 2^+)$		1		J^{*} : 1486 γ to (4 ⁺) and 3059 γ to 4 ⁻ .
7648? 8	(1,2) $(1,2^+)$		J		J . 70289 to 0 . I^{π} · 76482 to 0 ⁺
7663 2	$(2^+ \text{ to } 6^+)$		J	M	E(level): from $(\alpha, p\gamma)$.
	(J^{π} : 2314 γ to 4 ⁺ .
7667 1	(3 ⁻ to 7 ⁻)			М	E(level): from $(\alpha, p\gamma)$.
					J^{π} : 2008 γ to 5 ⁻ .
7683 2	$(3^{-},4^{+})$	10 fs 6		LMN P	XREF: N(7700).
					E(level): weighted average of 7684 2 from $(\alpha, p\gamma)$
					I^{π} : 3203v to 4 ⁻ and 5515v to 2 ⁺ : I (t p)=(3.4)
					from 0^+ for a level at 7700.
7702 1	(1^{+})			M S	XREF: S(7721).
					J^{π} : 7701 γ to 0 ⁺ ; M1 excitation in (e,e').
7786 1	$(2^{-} \text{ to } 6^{-})$			M	J^{π} : 3306 γ to 4 ⁻ .
7828 2	(1 to 5)			M I M	J^{Λ} : 4018 γ to 3.
1831 2	(1,2)			THU	$L(10001)$: 110111 ($(\alpha, p\gamma)$). $I^{\pi} \cdot 4047\gamma$ to 3^{-} and 7856 γ to 0^{+}
7858.9 5	(6)		Е	lMn	J^{π} : 1184.5 $\gamma \Delta J$ =1 d to 5 ⁻ .
7893.4 13	$(1^+, 2^+)$	<3.5 fs		1M P S	XREF: S(7877).
					Additional information 42.
					J^{π} : 7893 γ to 0 ⁺ ; M1,E2 excitation in (e,e').
7899-2	$(3^{-} \text{ to } 7^{-})$			IM	E(level): from $(\alpha, p\gamma)$.
7911 /	$(3^{-}4^{+})$			MN	$J : 1225\gamma (0.5)$. XRFF: N(7920)
//11/1	(5,1)				E(level): from $(\alpha, p\gamma)$.
					J^{π} : γ 's to 2 ⁺ and 5 ⁻ ; L(t,p)=(3,4) from 0 ⁺ for a
					level at 7920.
7992 2	$(1^{-},2,3^{-})$	<4 fs	J	M P	E(level): from $(\alpha, p\gamma)$ and (p, γ) :resonances.
					J [*] : 5824 γ to 2 ⁺ ; primary 2405 γ and 3210 γ from
					T _{1/2} : from $(\alpha \gamma)$ resonances (1981BuZY)
8068 1	$(3^{-},4^{+})$			lmn	XREF: N(8050).
	(-))				E(level): from $(\alpha, p\gamma)$.
					J^{π} : 4258 γ to 3 ⁻ ; $L(t,p)=3,4$ from 0 ⁺ for a group at
0055 00 00	- +	0.11 2			8050.
8077.20 22	71	0.11 ps 3	EF H	IM	J ^{<i>i</i>} : 1669.0 γ Δ J=1 M1+E2 γ to 6'; 492.6 γ
					$MI(\pm E2)$ If $OIII = 0$. The from (α, p_2)
8106 2	$(0^+ \text{ to } 4^+)$			Mn	E(level): from $(\alpha, p\gamma)$.
	()				J^{π} : 5938 γ to 2 ⁺ .
8124 <i>1</i>	(3 ⁻ to 6 ⁺)			Mn	XREF: n(8111).
					E(level): from $(\alpha, p\gamma)$.
81 25 0 ^{<i>a</i>}	(\mathcal{L}^{-})		F	м	$J^{n}: 27/4\gamma$ to 4^{-1} and 3538 γ to 5^{-1} .
8125.0 ⁴ 4	(0)		Ł	m	J^{**} : 1055 $\gamma \Delta J = (0) (M1 + E2)$ to (6).

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XR	EF	Comments
8181 2	(3 ⁻ ,4 ⁺)		M	N	E(level): from $(\alpha, p\gamma)$.
8215 2	(3 ⁻ to 7 ⁻)		М		J^{α} : 6013 γ to 2^{+} ; L(t,p)=3,4 from 0^{+} for a 8185 group. E(level): from $(\alpha, p\gamma)$.
	. ,				J^{π} : 2556 γ to 5 ⁻ .
8233 2	(1 ⁻)		LM	n S	XREF: S(8240).
					E(level): from $(\alpha, p\gamma)$.
99(1.2	(2-1)				J^{n} : 8232 γ to 0 ⁺ ; E1 excitation in (e,e').
8261 2	(3 to 6)		M	n	E(level): from $(\alpha, p\gamma)$.
8311.2	(1^{+})		м	s	f = 57817 + 104 and $20027 + 105$. $F(\text{level}): \text{ from } (\alpha \text{ pv})$
0511 2	(1)			5	J^{π} : 6143 γ to 2 ⁺ and 4501 γ to 3 ⁻ : 1 ⁺ is suggested by
					M1 excitation in (e,e') .
8353 <i>3</i>	$(1,2^+)$		1M		XREF: 1(8370).
					E(level): from $(\alpha, p\gamma)$.
0001.0	(2+)		7.00		J^{π} : 8352 γ to 0 ⁺ .
8391 2	(2^{+})		TW.	N S	XREF: $I(8370)N(8405)S(8409)$.
					E(level): from $(\alpha, p\gamma)$. $I^{\pi} \cdot 8390\alpha$ to 0^+ : E2 excitation in (e.e')
8417 2	$(3^{-} \text{ to } 7^{-})$		M	n	XREF: n(8405).
	()				E(level): from $(\alpha, p\gamma)$.
					J^{π} : 2758 γ to 5 ⁻ .
8481 2	(3 ⁻ to 6 ⁻)		М		E(level): from $(\alpha, p\gamma)$.
0.401.1.4		_			J^{π} : 3895 γ to 5 ⁻ and 4001 γ to 4 ⁻ .
8491.1 4	(6 ⁻)	ł	EF LM		J^{n} : (5,7) is assigned in $(\alpha, p\gamma)$ based on an assignment
					of $J^{(1)}(0/0)=3$ 1421 $\gamma(\theta)$ to 7070 level which is consistent with AI=0 or 2 and 1421 $\gamma(DCO)$ in
					$(^{28}\text{Si} \alpha^2\text{pv})$ is consistent AI=1 but for large D+O
					admixture, it can also be consistent with $\Delta J=0$. The
					evaluator has adopted $\Delta J=0$ for 1421 γ to 7070 level
					and assigned $J^{\pi}(8491)=(6^{-})$ based on $J^{\pi}(7070)=(6)^{-}$
	(1.0)				not 5^- (see comment there).
8517 2	$(1,2^+)$		TW:	n	E(level): from $(\alpha, p\gamma)$.
8520 3	$(3^{-} to 6^{-})$		۱M	n	$J^{(1)}$: 85167 to $U^{(1)}$.
0520 5	(5 10 0)		1 11.		I^{π} 4040v to 4 ⁻ and 3934v to 5 ⁻
8569.59 19	8+	<0.6 ps	EFH M		J^{π} : 2161.0 γ $\Delta J=2$ E2 to 6 ⁺ , 1061.4 γ to 7 ⁻ .
		1			Additional information 43.
					$T_{1/2}$: from ²⁴ Mg(¹⁶ O,2p γ).
8595 2	$(3^{-} \text{ to } 7^{-})$		M		E(level): from $(\alpha, p\gamma)$.
0(50.2	(2- ((+)				J^{π} : 2936 γ and 4009 γ to 5 ⁻ .
8650 2	$(3 to 6^{+})$		M		E(level): from $(\alpha, p\gamma)$. π : 2001a, to 5^{-} and 2507a, to (4^{+})
8668 4	2+		M	N	J = 29977 (0.5) and $23977 (0.(4))$.
0000 /	2				E(level): from $(\alpha, p\gamma)$.
					J^{π} : L(t,p)=2 from 0 ⁺ ; 3791 γ to 3 ⁻ .
8783 2	(3 ⁻ to 7 ⁻)		M	n	E(level): from $(\alpha, p\gamma)$.
					J^{π} : 3124 γ to 5 ⁻ .
8789 <i>3</i>	$(4^{-} \text{ to } 7^{-})$		M	n	E(level): from $(\alpha, p\gamma)$.
8800 2	$(2^{-} to 6^{-})$	$\sim 3.5 \mathrm{fc}$	۱M	n D	$J^{*}: 2115\gamma$ to 5 and $1/19\gamma$ (6).
8800 2	$(2 \ 10 \ 0)$	< 5.5 18	111.	II F	I^{π} . primary 3128 γ from 4^{-}
8809 2	$(4^+ \text{ to } 8^+)$		1M:	n	E(level): from $(\alpha, p\gamma)$.
	/				J^{π} : 2401 γ to 6 ⁺ .
8828 2	(3 ⁻ to 7 ⁻)		M	n	E(level): from $(\alpha, p\gamma)$.
					J^{π} : 4242 γ to 5 ⁻ .

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF		Comments
8875 4	(3 ⁻ to 6 ⁻)			M	Х	E(level): from $(\alpha, p\gamma)$.
8944 2	(4 ⁺ to 7 ⁻)			Mn		$E(\text{level}): \text{ from } (\alpha, p\gamma).$
8956 2	(4 ⁻ to 7 ⁻)			Mn		J^{n} : 3285 γ to 5 ⁻ and 2536 γ to 6 ⁺ . E(level): from (α ,p γ).
9072 956 21	7-	<00 fa	EE U	TM		J^{π} : 4370y to 5 ⁻ and 1886y to (6) ⁻ .
8972.85° 21	,	<28 18	EF H	LM		$T_{1/2}$: <28 fs from DSAM for 4386γ in ³⁵ Cl(α,pγ) (1976G110). Other: 4.2 ps <i>14</i> for 2564γ in ²⁷ Al(¹⁶ O,αpγ) (1976Ko10) is discrepant, where the 2564γ was placed from 10174 level. Reversed ordering (proposed by 1976G110) of the 1201-2564 cascade defined a level at 8973 instead of 7610.
8998 2	(4+,5,6 ⁻)			MN P		XREF: N(9029). E(level): from $(\alpha, p\gamma)$. J ^{π} : 2590 γ to 6 ⁺ and primary 2930 γ from 4 ⁻ in
9072 2	(4 ⁻ ,5,6 ⁺)			Mn		(p, y) resonances. XREF: n(9100). E(level): from $(\alpha, p\gamma)$. We do to $(\Sigma) = (\alpha)^{-1}$ and $(\Sigma = 4^{+})$.
9077 2	(1 ⁻ to 5 ⁻)			Mn		$J : \gamma \ s \ to \ (3) \ , \ (6) \ and \ (5, 4).$ XREF: n(9100). E(level): from $(\alpha, p\gamma)$. $I^{\pi} \cdot 4200\gamma \ to \ 3^{-}$
9087 <i>3</i>	(3 ⁻ to 7 ⁻)			Mn		X = 1200 (a) = 1000 (b) X = 1000 (b) $E(\text{level}): \text{ from } (\alpha, p\gamma).$ $I^{\pi} = 3428 \gamma \text{ and } 4501 \gamma \text{ to } 5^{-1}$
9100 2	$(1,2^+)$			Mn		E(level): from $(\alpha, p\gamma)$.
9158 2	$(0^+ \text{ to } 4^+)$			М		E(level): from $(\alpha, p\gamma)$.
9170 2	(3 ⁻ to 6 ⁻)			MN		$J^{*}: 6990\gamma \text{ to } 2^{\circ}.$ E(level): from $(\alpha, p\gamma)$.
9199 <i>3</i>	(4 ⁻ to 8 ⁻)			M		J^{π} : 4690 γ to 4 ⁻ and 4584 γ to 5 ⁻ . E(level): from (α ,p γ).
9204 4	$(0^+ \text{ to } 4^+)$			М		J^{π} : 1074 γ to (6 ⁻). E(level): from (α ,p γ).
9260 4	$(0^+ \text{ to } 4^+)$			M		J^{π} : 7036γ to 2 ⁺ . E(level): from (α,pγ).
9293 2	(3 ⁻ to 7 ⁻)			Mn		J^{π} : 7092 γ to 2 ⁺ . E(level): from (α ,p γ).
9300 4	$(0^+ \text{ to } 4^+)$			Mn		J^{π} : 4707 γ to 5 ⁻ . E(level): from (α ,p γ).
9330 2	(4 ⁺ to 8 ⁺)			М		J ^{π} : 7132 γ to 2 ⁺ . E(level): from (α ,p γ). I ^{π} . 2022 γ to 6 ⁺
9339.2 [@] 4	8+	73 fs 17	E	KlM		J^{π} : 2051.3 γ ΔJ =2 E2 to 6 ⁺ , 835.3 γ from 9 ⁻ ; band member.
9349.6 <i>11</i> 9374 2	(7 ⁻) (3 ⁻ to 7 ⁻)		E	lm MN		T _{1/2} : from $(\alpha, p\gamma)$. J ^{π} : γ' s to 5 ⁻ and 6 ⁺ . XREF: N(9401). E(level): from $(\alpha, p\gamma)$. I ^{π} : 4788 γ to 5 ⁻
9431	(1 ⁺)				S	E(level): from (e,e').
9437 2	(3 ⁻ to 7 ⁻)			MN		J^{+} : M1 excitation in (e,e'). E(level): from $(\alpha, p\gamma)$. J^{π} : 3778 γ to 5 ⁻ .

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$		XREF		Comments
9460 2	$(3^{-} \text{ to } 7^{-})$			MN		XREF: N(9481).
	· · · · · ·					E(level): from $(\alpha, p\gamma)$.
						J^{π} : 4874 γ to 5 ⁻ .
9535 20	2+			N		J^{π} : L(t,p)=2 from 0 ⁺ .
9537.0 <mark>&</mark> 4	$8^{(+)}$		Е	LM		Additional information 44.
						J^{π} : 967.4 $\gamma \Delta J=0$ d to 8 ⁺ , 2248 γ and 3128 γ to 6 ⁺ ;
						band member.
9597 <i>5</i>	1-			J	S	XREF: S(9603).
						J^{π} : 9596 $\gamma \Delta J=1$ d to 0 ⁺ ; E1 excitation in (e,e').
9644 2	$(5^{-} \text{ to } 9^{-})$			Mn		XREF: n(9623).
						E(level): from $(\alpha, p\gamma)$.
0645	(1-)				-	J^{n} : 2136 γ to 7 ⁻ .
9645	(1)			n	S	XREF: $n(9623)$.
0647.2	(2 - 4 - (-))			Mar		J ^{$^{+}$} : E1 excitation in (e,e ^{$^{-}$}).
9047 2	$(2 \ 10 \ 0)$			PIII		$\mathbf{AKEF: } \mathbf{H}(9025).$ $\mathbf{E}(\mathbf{lovel}): \mathbf{from} (\alpha, \mathbf{pe})$
						E(level). from $(\alpha, \beta\gamma)$. $I^{\pi} \cdot 3045\gamma$ to A^{-}
9655 2	$(3^{-} to 7^{-})$			м		$F(\text{level})$: from $(\alpha \text{ pv})$
7055 2	(5 107)			11		$I^{\pi} \cdot 3996\gamma \text{ to } 5^{-1}$
9669 2	$(3^{-} \text{ to } 7^{-})$			м		E(level): from $(\alpha, p\gamma)$.
,	(8 10 ,)					J^{π} : 4010 γ to 5 ⁻ .
9689 <i>5</i>	1-			J		J^{π} : 9688 γ D to 0 ⁺ and 5752 γ D(+Q) to 2 ⁺ ;
						π =natural for resonant states in (α, γ) :resonances.
9720 20	2+			N		J^{π} : L(t,p)=2 from 0 ⁺ .
9797 5	3-			JN		XREF: N(9770).
						J ^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural for
						resonant states.
9811 5	1-			J		J ^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural for
						resonant states.
9829 <i>2</i>	(4 ⁻ to 8 ⁻)			М		E(level): from $(\alpha, p\gamma)$.
	a +					J^{n} : 2759 γ to (6) ⁻ .
9894 5	2+			JN		XREF: N(9863).
						J^{π} : 9893 $\gamma \Delta J=2$ to 0 ⁺ , π =natural for resonant states
0017 5	1-	$12 f_{0} I0$		1		In (α, γ) : resonances.
9917 5	1	12 18 10		J		J ^{**} : 99107 D to 0 [*] , π =natural in (α, γ) :resonances.
9923 20	$(3^{-} 4^{+})$			N		$I_{1/2}$. DSAM III (α, γ) (1981DuZ I). I^{π} : I (t p)=3.4 from 0 ⁺
9925 20	(9^+)		FF	IM		$J^{\pi} \cdot 1364\gamma \Lambda I - 1 \gamma \text{ to } 8^+$
9951 5	2+		LI	1		I^{π} : spin from $\gamma(\theta)$ in $(\alpha \gamma)$:resonances π =natural for
<i>)))</i>]]]]]]	2			5		resonant states.
9996 5	1-			JN		XREF: N(10003).
						J^{π} : 9995 γ D to 0 ⁺ , π =natural for resonant states in
						(α, γ) :resonances.
10024.9 ^a 5	(8 ⁻)		E	M		J^{π} : 1900 $\gamma \Delta J=2$ to (6 ⁻), 1948 γ to 7 ⁺ ; band member.
10034 5	1-			J		J ^{π} : 10034 γ D to 0 ⁺ , π =natural for resonant states in
						(α, γ) :resonances.
10047 5	(1^{-})			Jn	S	XREF: S(10058).
						J^{π} : E1 excitation in (e,e'); 5481 γ to 2 ⁺ .
10067 5	3-			Jn		J ^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances, π =natural for
10101 2	(0- , 7-)					resonant states.
10101 2	(3 to 7)			Mn		E(level): from $(\alpha, p\gamma)$.
10112.2	$(A^{+} to 8^{+})$			Mm		J. 4452γ and 5515γ to 5. E(level): from (αp_2)
10112 2	(+ 100)			TILL		I^{π} : 3703 γ to 6 ⁺ : L(t n)=3.4 for a 10100.20 group
10118	(1^{-})				S	J^{π} : E1 excitation in (e.e').
	× /				-	

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF		Comments	
10120 2	(6,7,8)		M		E(level): from $(\alpha, p\gamma)$.	
10135 2	(5 ⁻ to 9 ⁻)		M		$J^{*:} 2612\gamma$ to 7 and 2043γ to 7. E(level): from $(\alpha, p\gamma)$.	
10146 10	2+		J		J ^{<i>n</i>} : 2627 γ to 7 ⁻ . J ^{<i>π</i>} : 10146 γ Δ J=2 to 0 ⁺ , <i>π</i> =natural for resonant	
10170 5	3-		J 1 N		states in (α, γ) :resonances. XREF: N(10182). I^{π} : spin from $\gamma(\theta)$ in (α, γ) :resonances π -natural	
10174.29 ^c 21	9-	2.8 ps 5	EF HI 1M		for resonant states. J^{π} : 1201.32 $\gamma \Delta J$ =2 E2 to 7 ⁻ , 1604.67 $\gamma \Delta J$ =1 E1+M2 γ to 8 ⁺ . Additional information 45. $T_{1/2}$: weighted average of 4.6 ps <i>14</i> from	
10181 2	(5 ⁻ to 9 ⁻)		М		$(^{14}N,n2p\gamma)$ and 2.6 ps 4 from $(^{16}O,2p\gamma)$. E(level): from $(\alpha,p\gamma)$.	
10182 <i>20</i> 10184 <i>5</i>	(3 ⁻ ,4 ⁺) 1 ⁻	19 fs <i>10</i>	N J		J^{π} : 26/3 γ to 7 ⁻ . J^{π} : L(t,p)=3,4 from 0 ⁺ . J^{π} : 10183 γ D to 0 ⁺ , π =natural for resonant states	
10.2×10^3 l	(2^{+})		V		in (α, γ) :resonances. $T_{1/2}$: DSAM in (α, γ) :resonances (1981BuZY). I^{π} : $I_{2}^{(3)}$ He t)=2 from 0 ⁺	
10207	(2) (1^+)		K	S	J^{π} : M1 excitation in (e,e').	
10217 5	$(0^+$ to $4^+)$		J		J^{π} : 5651 γ to 2 ⁺ .	
10245 2	(5 ⁻ to 8 ⁻)		М		E(level): from $(\alpha, p\gamma)$. J^{π} : 2737 γ to 7 ⁻ , 1754 γ to (6 ⁻).	
10245 <i>10</i> 10255 <i>5</i>	(0 ⁺ to 4 ⁺) 1 ⁻]]		J^{π} : 6308 γ and 8077 γ to 2 ⁺ . J^{π} : 10254 γ D to 0 ⁺ , π =natural for resonant states	
10274 2	(4 ⁺ to 8 ⁺)		М		In (α, γ) :resonances. E(level): from $(\alpha, p\gamma)$.	
10316 2	(3 ⁻ to 7 ⁻)		м		J^{n} : 2986 γ to 6 ⁺ . E(level): from (α ,p γ).	
10335 5	1-		J		J^{π} : 5730 γ to 5 ⁻ . J ^{π} : 10333 γ D to 0 ⁺ , π =natural for resonant states	
					in (α, γ) :resonances.	
10382 <i>5</i> 10398 <i>4</i>	$(1^{-} \text{ to } 4^{+})$ 1^{-}	12 fs 11	J J n		J ^{π} : 6571 γ to 3 ⁻ and 8214 γ to 2 ⁺ . E(level): 10393 5 from (α, γ):resonances.	
					J ^{π} : 10400 γ D to 0 ⁺ , π =natural for resonant states in (α , γ):resonances.	
10431 5	1-	26 fs 12	Jn		$T_{1/2}$: DSAM in (α, γ) (1981BuZY). J^{π} : 10429 γ D to 0 ⁺ , π =natural for resonant states in (α, γ) :resonances. $T_{1/2}$: DSAM in (α, γ) (1981BuZY)	
10443 2	(4 ⁺ to 8 ⁺)		Mn		E(level): from (α, γ) (1501Bu21). $I^{\pi_{1}}$ 3155 γ to 6 ⁺	
10455 2	(5 ⁻ to 8 ⁺)		LM		E(level): from $(\alpha, p\gamma)$.	
10494 5	1-		J		J^{π} : spin=1 from $\gamma(\theta)$ in (α, γ) :resonances, π -natural for resonant states	
10495	(1^{+})			S	J^{π} : M1 excitation in (e,e').	
10507 5	$(1,2^+)$		J		J^{π} : 10505 γ to 0 ⁺ .	
10516 5	(0+)		JN		XREF: N(10510).	
10547 5	(0+)		JN		J^{π} : L(t,p)=(0) from 0 ⁺ . XREF: N(10550).	
10557 2	$(5^{-} \text{ to } 9^{-})$		м		J^{π} : L(t,p)=(0) from 0 ⁺ . J^{π} : 3049 γ to 7 ⁻ .	
10557 2	(5 (0))		11		<i>5.5017 10 1</i> .	

³⁸Ar Levels (continued)

E(level) [†]	J#‡	$T_{1/2}^{\#}$		XREF	Comments	
10587 5	1-	18 fs 11		Jn	XREF: n(10595). J ^{π} : 10585 γ D to 0 ⁺ , π =natural in (α , γ):resonances.	
10589 2	(4 ⁺ to 7 ⁻)			Mn	T _{1/2} : DSAM in (α, γ) :resonances (1981BuZY). XREF: n(10595). E(level): from $(\alpha, p\gamma)$.	
10611 5	$(1^{-} to 4^{+})$			Jn	J^{π} : 6003 γ to 5 ⁻ and 4180 γ 6 ⁺ . XREF: n(10595). J^{π} : 5453 γ to 2 ⁺ and 5097 γ to 3 ⁻ .	
10631.3 20	(2 ⁻)			1 PQ	J ^{π} : 4774 γ and 5547 γ to (2) ⁻ ; possible IAS of ³⁸ Cl g.s., J ^{π} =2 ⁻ in (³ He,d).	
10634 2 10657.9 5	(6 ⁺ to 10 ⁺)	<300 eV		lM P	J^{π} : 2064 γ to 8 ⁺ .	
10666 5	(1 ⁻ ,2 ⁺ ,3 ⁻ ,4 ⁺)			J	J ^{π} : 6100 γ and 6730 γ to 2 ⁺ , 6855 γ to 3 ⁻ , π =natural in (α , γ):resonances.	
10673 10676 2	(2 ⁻) (4 ⁺ to 8 ⁺)			S Mn	J ^{π} : M2 excitation in (e,e'). E(level): from (α ,p γ). I ^{π} : 4267 α to 6 ⁺	
10684 5	1-			Jn	J^{π} : 10682 γ D to 0 ⁺ , π =natural in (α, γ) :resonances.	
10726 <i>5</i> 10732.4 <i>6</i>	(1 ⁻ to 4 ⁺)	<300 eV		J P	J ^{π} : 8557 γ to 2 ⁺ and 5212 γ to 3 ⁻ .	
10768 5	2+ 2+			ן אר	J ^{π} : spin from $\gamma(\theta)$ and π =natural in (α, γ) :resonances. J ^{π} : 10801 α , AI=2.0 to 0 ⁺ , π =natural in	
10805 5	$(0 \text{ to } 3^{-})$			р	J : 108017 $\Delta J = 2$ Q to 0 , π = natural in (α, γ):resonances; L(⁷ Li,t)=2 from 0 ⁺ . I ^{π} : 4043 γ and 4462 γ to 1 ⁻	
10816.2 9	(0.00.5.)			P	γ 's from this level are unresolved from those associated with the 10815.6 level.	
10827.0 6 10850.1 7 10857 5	(2) (2 ⁻ ,3 ⁻) 1 ⁻			Р Р Ј	J ^π : 10825γ to 0 ⁺ and 6347γ to 4 ⁻ . J ^π : 4276γ and 5116γ to 1 ⁻ , 4640γ to 4 ⁻ . J ^π : 10855γ D to 0 ⁺ , π=natural in	
10873.8 <i>5</i> 10890 <i>2</i>	(0 ⁺ to 3 ⁻) (5 ⁻ to 8 ⁻)			P M	J^{π} : 3382 γ to 7 ⁻ and 2765 γ (6 ⁻).	
10914.5 <i>5</i> 10933 <i>10</i>	(1 ⁻ ,2,3 ⁻) 1 ⁻	<0.2 keV		P J	J^{π} : 4561 γ to 1 ⁻ , 5089 γ and 5401 γ to 3 ⁻ . J^{π} : 10931 γ D to 0 ⁺ , π =natural in	
10945.0 <i>5</i> 10947.4 <i>5</i>	$(1^{-},2^{+})$ $(2^{-},3,4^{+})$	<0.2 keV <0.2 keV		P P	J^{π} : 10943 γ to 0 ⁺ and 5431 γ to 3 ⁻ . J^{π} : 6381 γ to 2 ⁺ and 4738 γ to 4 ⁻ .	
10947.5 ^b 7	(9 ⁻)		E	LM	J ^π : 2378γ ΔJ=1 d to 8 ⁺ , 773γ to 9 ⁻ , 3439γ to 7 ⁻ .	
10962.3 6 10963.3 6	2 ⁽⁺⁾	<0.2 keV		P P	J ^{π} : spin from $\gamma(\theta)$ in (p, γ):resonances, 7586 γ to 0 ⁺ and 5614 γ to 4 ⁺ .	
10967.5 6 10979.9 6 10988.2 7	(2)	<0.2 keV		P P P	E(level): probable doublet. J^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances, 7611 γ to 0 ⁺ and 6508 γ to 4 ⁻	
11000.2 6				Р	100 and 00007 10	
11005.9 6 11013 7	1			P J	J^{π} : 11011 γ D to 0 ⁺ , π =natural in	

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	EF	Comments
					(α, γ) :resonances. This level could correspond to 11000.2, 11005.9 and 11014.6 levels in (p, γ) :resonances.
11014.6 6				Р	
11023.2 6	4-			Р	
11032 6	1-		J		J^{α} : 11030 γ D to 0 ⁺ , π =natural in (α , γ):resonances. This level could correspond to 11023.2 in (p, γ):resonances.
11044.2 6		<0.2 keV		Р	J^{π} : see comment for 11045.1 level.
11045.2 6	(3 ⁻)	<0.2 keV	J	P	J ^{π} : 8877 γ D+Q to 2 ⁺ ; $\gamma(\theta)$ in (α, γ) :resonances gives 3 ⁻ for unresolved 11044.2 and 11045.2 levels.
11051.5 0	(2)	< 0.2 keV		P	π_{-} 11052 to 0 ⁺ 5540 to 2 ⁻ 4944 to 4 ⁻
11055.70	(2)	< 0.2 keV		P D	J^{-1} : 11052 γ 100 ⁻¹ , 5540 γ 105, 4844 γ 104.
11059.2.0	$(1,2^{+})$	<0.2 keV		P	J^{+} : 110587 and 65497 to 0^{+} , 64957 and 88917 to 2^{+} .
11000.1 0	(2)	<0.2 KeV		Р	J^{π} : 05507 and 110047 to 0 ⁺ , 05807 to 4 ⁺ .
11067 10	1		J M		E(level): from $(\alpha, p\gamma)$. 2943 γ to (6^-) suggests that this level is different from 11067. 1 ⁻ level
11078 2			м		F(level): from $(\alpha \mathbf{p} \mathbf{y})$
11083.7 6				Р	
11087 2	(4 ⁺ to 8 ⁺)		М		E(level): from $(\alpha, p\gamma)$. J ^{π} : 3798 γ to 6 ⁺ .
11095.4 6				Р	,
11096.9 6	(2 ⁺)	<0.2 keV		Р	J^{π} : 7719 γ and 11095 γ to 0 ⁺ , 5747 γ to 4 ⁺ ; π =natural from ³⁷ Cl(p, α);res.
11099.1 6				Р	
11106.9 6				Р	
11107.1 6				Р	
11109 2	(4 ⁻ to 8 ⁻)		М		E(level): from $(\alpha, p\gamma)$. J ^{π} : 2984 γ to (6 ⁻).
11112.9 6		<0.2 keV		Р	E(level): probable doublet. J^{π} : π =natural from ³⁷ Cl(p, α):res.
11116.96	3-	<0.2 keV		Р	J^{π} : from $(p, \alpha(\theta))$ in (p, γ) :resonances.
11122.9 6	3-		J	Р	J^{π} : 8954 γ $\Delta J=1$ d+Q to 2 ⁺ , 6642 γ to 4 ⁻ , π =natural in 37 Cl(p, α):res.
11124.96		<0.2 keV		Р	
11135.06				Р	
11136.4 6				Р	
11144.4 6		<0.2 keV		Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11146.06		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11146.96	(2,3 ⁻)			Р	J^{π} : 11145 γ to 0 ⁺ , 5797 γ to 4 ⁺ and 6666 γ to 4 ⁻ .
11157.6 7		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11161.0 6	$(2^{-},3,4^{+})$	<0.2 keV		Р	J^{π} : 7224 γ to 2 ⁺ , 4559 γ and 4951 γ to 4 ⁻ .
11163 2	(6,7,8)		М		E(level): from $(\alpha, p\gamma)$. J ^{π} : 3086 γ to 7 ⁺ and 3655 γ to 7 ⁻ .
11167.6 6	(3 ⁻)	<0.2 keV		Р	J ^{π} : from $\gamma(\theta)$ in (p, γ):resonances; 11166 γ to 0 ⁺ , 4958 γ to 4 ⁻ .
11173.0 6	3-	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 7795 γ to 0 ⁺ , 4571 γ to 4 ⁻ and 5119 γ to (4 ⁺);
11174 2	(5 ⁻ to 9 ⁻)		LM		E(level): from $(\alpha, p\gamma)$. J ^{π} : 2201 γ to 7 ⁻ .
11175 10	1-		J		J^{π} : 11173 γ D to 0 ⁺ , π =natural in (α , γ):resonances.
11182.6 6		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11184.8 6	$(2^+, 3^-)$	<0.2 keV		Р	J ^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances, π =natural

³⁸Ar Levels (continued)

E(level) [†]	J ^π ‡	$T_{1/2}^{\#}$		XRE	EF		Comments
							from ${}^{37}\text{Cl}(p,\alpha)$:res.
11188 6 6		<0.6 keV			P		I^{π} : π -natural from 37 Cl(n α):res
11107.6.6	(1-23-)	< 0.0 keV			D		I^{π} : $A/25_{\pi}$ and $A/4_{\pi}$ to 1^{-5} 56% to 3^{-5}
11197.00	(1, 2, 3)	<0.2 KC V		м	r		J : 442.5 y and 4644 y to 1 , 5064 y to 3 .
11199 2	(8,9,10)			М			E(level): If $(\alpha, p\gamma)$. $I\pi$: 2620 α to 8^+
11200 5 6					Р		J . 2029 10 8 .
11201.9.6	1-	<0.2 keV			P		I^{π} from $\alpha(\theta)$ in (p γ) resonances
11201.2 7	1	<0.2 KC V			I D		π_{1} = noticed from $\frac{37}{2}$ Cl(n a) mas
11204.57	(1 - 2 2 -)	(0.2.1V			P		J : π =natural from $Ci(p, \alpha)$:res.
11210.4 /	(1,2,3)	<0.2 kev			Ρ		3^{-1} : 44377 and 46367 to 1, 53857 and 56977 to 3^{-1} .
11214.7 6	$(1^{-},2^{+})$	<0.2 keV			Р		J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 6505 γ and 11213 γ to 0 ⁺ , 6057 γ and 6649 γ to 2 ⁺ .
11216.4 8					Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
11217.9.6		< 0.2 keV			P		I^{π} : π -natural from ³⁷ Cl(p, α):res
11217.90		<0.2 KC V			D		\mathbf{y} : \mathbf{x} -natural from $\operatorname{Cr}(\mathbf{p}, \mathbf{u})$.ics.
11220.0 0	(2^{+})	$\sim 0.2 \text{ trav}$			r D		I_{π} (1.2.2) from (n +(0)), 11226+ to 0 ⁺ and
11227.3 4	(21)	<0.2 kev			Ρ		J^{*} : (1,2,3) from (p, $\gamma(\theta)$); 11226 γ to 0 ⁺ and 5877 γ to 4 ⁺ .
11233.6 7	(2+,3-)	<0.2 keV			Р		J^{π} : 11232 γ to 0 ⁺ and 5575 γ to 5 ⁻ ; π =natural from 37 Cl(p, α);res.
11244.8.6	(3^{+})	<0.2 keV			Р		I^{π} : 4995 γ to 2 ⁺ , 4968 γ to 4 ⁺ and 5035 γ to 4 ⁻ .
	(-)				-		3875γ to (1^+)
11250 10	1-			1			I^{π} : 11248 γ D to 0 ⁺ : π =natural in ($\alpha \gamma$):resonances
11250.8.6	1	<0.6 keV		5	D		π : π -natural from 3^{7} Cl(n a):res
11259.60		<0.0 KC V			r D		$J : \pi$ -natural from $Cr(p, \alpha)$.tes.
11202.4 0	(2 - 2 -)	(0.2.1V			P		$I\pi$, 4402, 4600, and 4011, to 1= 6704, to 4=
11264.9.0	(2,3)	<0.2 keV		_	P		$J^{\pi}: 4492\gamma, 4690\gamma$ and 4911γ to 1, $6/84\gamma$ to 4.
11268.1.6	3	<0.2 keV		J	Р		J^{π} : 3 from $\gamma(\theta)$ and π =natural in (α, γ) :resonances.
11270.0 6	$(1^{-}, 3^{-})$	<0.6 keV			Р		J^{π} : from $(p,\alpha(\theta))$ in (p,γ) :resonances.
11272.1 6	(3 ⁻)	<0.2 keV			Р		J^{π} : 5677 γ to 2 ⁺ , 5922 γ to 4 ⁺ and 5062 γ to 4 ⁻ ,
							3902 γ to (1 ⁺); π =natural from ³⁷ Cl(p, α):res.
11275.5 6	$(1^{-},2^{+})$				Р	x	E(level): 11275.5 and 11275.7 are separate levels.
							J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11275.76	$(1,2^{+})$	<0.2 keV			Р	x	J^{π} : 6566 γ and 11274 γ to 0 ⁺ , 5681 γ to 2 ⁺ .
11283.96					Р	x	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11285.4 6	$(2^+,3)$	<0.2 keV			Р	x	J^{π} : 9117 γ to 2 ⁺ , 5428 γ to (2) ⁻ and 5936 γ to 4 ⁺ .
11287.2.6	(_ ,=)				P	x	
11289.4.6	(3^{-})	<0.2 keV			P	v	I^{π} : 4715 γ to 1 ⁻ 6809 γ to 4 ⁻ and 5940 γ to 4 ⁺
11200.10	$(7^+ \text{ to } 11^+)$	<0.2 Re V		٦м	•	v	$F(\text{level})$: from $(\alpha \text{ pv})$
11290 2	(7 10 11)			111		~	$\pi_{1,1256}(a,b)$
11201 5 6	(1 - 2 +)	<0.6 lm V			р		J = 15507 to (9).
11291.50	(1,2)	<0.0 Ke v			r D		J^{*} . Hom $\alpha(\theta)$ in (p,γ) resonances.
11292.0 0	(10+)			1.4	Р		
11298.77	(101)		EF	ΙM			J^{*} : 1959.5 $\gamma \Delta J=2 Q$ to 8 ⁺ , 1364 $\gamma \Delta J=1 d+Q$ to (9 ⁺).
11302.4 5	5-	<0.2 keV			Pq		T=1+2
							XREF: q(11300).
							J^{π} : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances; 5643 γ
							M1+E2 to 5^- : probable IAS of 671 5^- in ³⁸ Cl
							from (³ He d)
1120626	(1-2+)	<0.6 hav			р		IIOIII (IIC,U).
11300.3 0	$(1, 2^{+})$	<0.6 KeV			P		J^{*} : from $\alpha(\theta)$ in (p,γ) :resonances.
11307.5.6	5	<0.2 keV			Рq		1=1+2
							XREF: q(11300).
							J": trom $\gamma(\theta, \text{pol})$ in (p, γ) :resonances; 5648 γ
							M1+E2 to 5^- ; probable IAS of 671, 5^- in 38 Cl
							from (³ He,d).
11315 10	1-			J			J^{π} : 11313 γ D to 0 ⁺ , π =natural in (α . γ):resonances.

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRE	EF	Comments
11316.7 6	(3 ⁻)	<0.2 keV		Р	J^{π} : (1 ⁻ ,3 ⁻) from $\alpha(\theta)$ in (p, γ):resonances, 5658 γ and 6730 γ to 5 ⁻
11318.7 6	(2+)	<0.2 keV		Р	J^{π} : 6609 γ and 11317 γ to 0 ⁺ , 5969 γ to 4 ⁺ and 6838 γ to 4 ⁻ .
11326.2 6		<0.2 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11327.3 6	$(1^{-},2^{+})$			Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11328.3 6	$(3^{-},4^{+})$	<0.2 keV		Р	J^{π} : 9160 γ to 2 ⁺ and 5669 γ to 5 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11330.1 6				Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11330.5 6	$(1^{-} \text{ to } 4^{+})$	<0.2 keV		Р	J^{π} : 6173 γ and 9162 γ to 2^+ , 6453 γ to 3^- .
11338.6 6	(2+)	<0.2 keV		Р	J^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances; 11337 γ to 0^+ and 5513 γ to 3^- .
11348.96	$(2^{-},3,4^{+})$	<0.2 keV		Р	J^{π} : 7412 γ and 9180 γ to 2 ⁺ , 6868 γ to 4 ⁻ .
11350.6 6	3-	<0.2 keV		Pq	T=1+2 J^{π} : 9182 γ E1(+M2) to 2 ⁺ , 7540 γ and 6473 γ M1+E2 to 3 ⁻ , 5074 γ and 6001 γ to 4 ⁺ , 4749 γ and 5141 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res; possible LAS of 755, 3 ⁻ in ³⁸ Cl from (³ Ha d)
1125466	2-	<0.2 keV	1	Da	possible IAS of 755, 5 -11 °CI from (*He,u).
11334.0 0	3	<0.2 KeV	J	Pq	1=1+2
					J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; possible IAS of 755, 3^{-} in 38 Cl from $({}^{3}$ He,d).
11359.4 6				Р	
11361.9 6		<0.2 keV		Р	
11367.4 7	3-	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11369.1 7				Р	
11373.7 7	$(1^{-}.2.3^{-})$	<0.2 keV		Р	J^{π} : 4799 γ and 5639 γ to 1 ⁻ , 6496 γ and 7563 γ to 3 ⁻ .
11374 10	1-		1		I^{π} : 11372 γ D to 0^{+} , π =natural in (α, γ) :resonances.
11375.6 7	4+	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (\mathbf{p}, γ) :resonances.
11375.9 7				P	· · · · · · · · · · · · · · · · · · ·
11379 2	(4 ⁺ to 8 ⁺)		М	- -	E(level): from $(\alpha, p\gamma)$. J ^{π} : 4970 γ to 6 ⁺ .
11379.1 7	(2 ⁺)	<0.2 keV		Р	J^{π} : (1 ⁻ ,2 ⁺) from $\alpha(\theta)$ in (p, γ):resonances; 8001 γ to 0 ⁺ , 5103 γ and 5337 γ to 4 ⁺ , 6898 γ to 4 ⁻ .
11383.1 7				Р	
11383.4 7	$(1^{-},2^{+})$	<0.2 keV		Р	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11384.9 7	3-			Pq	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d). Possible T=2.
11389.97		<0.2 keV		Р	
11393.0 8	3-	<0.2 keV		Pq	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances; possible IAS of 755, 3 ⁻ in ³⁸ Cl from (³ He,d). Possible T-2
11399.5 7	(3 ⁻)	<0.2 keV	ЈК	Р	XREF: K(11400). J^{π} : 9231 γ D+Q to 2 ⁺ ; ($\alpha, \gamma(\theta)$); L(⁷ Li,t)=3 from 0 ⁺ for a group at 11400
11401.5.7	$(1^{-}.2^{+})$	<0.2 keV		Р	J^{π} : 6692 γ and 11400 γ to 0 ⁺ , 7591 γ to 3 ⁻ .
11409.3 7	(2)	<0.2 keV		P	J^{π} : 11408 γ to 0 ⁺ , 5200 γ to 4 ⁻ , 5133 γ and 6059 γ to 4 ⁺ .
11422.7 7				Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11423.9 7	(3 ⁻)	<0.2 keV		Р	J ^{π} : 4849 γ to 1 ⁻ and 6943 γ to 4 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11428 2	(4 ⁺ to 8 ⁺)		М		E(level): from $(\alpha, p\gamma)$. J ^{π} : 5019 γ to 6 ⁺ .

³⁸Ar Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XRI	EF	Comments
11428.9 7	(3,4 ⁺)	<0.2 keV		Р	J^{π} : 6271 γ to 2 ⁺ , 6948 γ to 4 ⁻ and 5152 γ and 6079 γ to 4 ⁺
11431.9 7	1-	<0.2 keV	J	Р	J^{π} : 11430 γ D to 0 ⁺ , π =natural in
11435.9 7 11442.9 7	(2 ⁺ ,3 ⁻) 3 ⁻	<0.2 keV	M J	P P	J^{π} : 11434 γ and 6726 γ to 0 ⁺ , 6849 γ to 5 ⁻ . J^{π} : 9274 γ Δ J=1 d(+Q) to 2 ⁺ ; 4841 γ and 6962 γ
11443.6 7	(2 ⁻ ,3)	<0.2 keV		Р	to 4 ; π =natural from $J^{*}Cl(p,\alpha)$:res. J ^{π} : (1,2,3) from $\gamma(\theta)$ in (p, γ):resonances; 4842 γ to 4 ⁻ , 5390 γ to (4 ⁺), 5849 γ and 9275 γ to 2 ⁺ .
11452 2			М		E(level): from $(\alpha, p\gamma)$.
11452.7 7		<0.2 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11454.7 7				Р	
11455.5 7				Р	
11455.7 7				Р	
11461.3 8	$(1^{-},2^{+})$	<0.2 keV		Р	J^{π} : 8084 γ and 11459 γ to 0 ⁺ , 7650 γ to 3 ⁻ .
11463.3 7		<0.2 keV		Р	
11466.2 8		<0.6 keV		Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11471.2 7	(1 ⁻ ,2 ⁺)	<0.2 keV		Р	J^{π} : 6761 γ , 8093 γ and 11469 γ to 0 ⁺ , 7660 γ to 3 ⁻ .
11478.4 7		<0.2 keV		Р	See comment for 11478.9 level.
11478.9 7	(3 ⁻)	<0.6 keV		Ρ	J ^{π} : (1 ⁻ ,3 ⁻) from $\alpha(\theta)$ in (p, γ):resonances; 5884 γ to 2 ⁺ and 5820 γ to 5 ⁻ .
					γ transitions from either of the two levels: 11478.4 and/or 11478.9.
11482.4 7				Р	
11483.4 7				Р	
11484 2	(7 ⁻ to 11 ⁻)		М		E(level): from $(\alpha, p\gamma)$. $I^{\pi} \cdot 1310\gamma$ to 9^{-1}
11487 2 7	$(1^{-}3^{-})$	<0.6 keV		Р	I^{π} : from $\alpha(\theta)$ in (p γ) resonances
11493.6.8	2^+	< 0.6 keV		P	I^{π} : from $\alpha(\theta)$ in (p, γ) :resonances
11495.00	$(5^+ \text{ to } 9^+)$	<0.0 KC V	м	1	$F(\text{level})$: from $(\alpha \text{ py})$
11195 2	(5 10))				$I^{\pi} \cdot 3418_{27}$ to 7 ⁺
11501.3 7	(2 ⁺)	<0.2 keV		Р	J^{π} : $(1^{-},2^{+})$ from $\alpha(\theta)$ in (p,γ) :resonances; 6791 γ 8124 γ and 11499 γ to 0^{+} 5292 γ to 4^{-}
11508 2 7	$(1^{-}2^{+})$	<0.6 keV		Р	I^{π} : from $\alpha(\theta)$ in (p γ):resonances
11511 1 7	(1,2)	(0.0 KC)		P	\mathbf{y} . From $u(\mathbf{y})$ in (\mathbf{p}, \mathbf{y}) resonances.
11511.7 7	(2)			P	J^{π} : 11510 γ to 0 ⁺ , 5302 γ and 7031 γ to 4 ⁻ , 5235 γ and 6162 γ to 4 ⁺
11514.5 7	1-	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 11513 γ to 0^+ , 6357 γ to 2^+ .
1151867				Р	I^{π} . π =natural from ³⁷ Cl(p α) res
11519.7 4	(1 ⁻ ,2 ⁺ ,3 ⁻)	<0.2 keV		P	J^{π} : 4747 γ to 1 ⁻ , 7709 γ to 3 ⁻ ; π =natural from ${}^{37}Cl(n \alpha)$ res
11525 8 7		<0.2 keV		D	en(<i>p</i> , <i>u</i>).res.
11525.67	(1.2^{+})	< 0.2 keV		D	I^{π} : 6818a, 8150a, and 9350a, to 0 ⁺
11527.07	$(1,2^{+})$ $(1^{-}2^{+})$	< 0.2 keV		D	I^{π} : 6820 γ , 8152 γ and 11528 γ to 0 ⁺ : π -natural
11550.27	(1,2)	<0.2 KC V		1	from ${}^{37}\text{Cl}(p,\alpha)$:res.
11531.9 7		<0.2 keV		Р	J': π =natural from ³⁷ Cl(p, α):res.
11534.2 7				Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11538.3 7		0.33 keV 11		Р	
11540.2 7	1-			Р	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11543 2	$(5^+ \text{ to } 9^+)$		М		E(level): from (α ,p γ). J ^π : 3466 γ to 7 ⁺ .
11544.5 7				Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XRI	EF	Comments
11545.3 7	(1 ⁻ ,2)			Р	J^{π} : 11543 γ to 0 ⁺ and 6032 γ to 3 ⁻ ; π =natural
11547 2	(7 ⁻ to 11 ⁻)		М		From ${}^{(1)}Cl(p,\alpha)$:res. E(level): from $(\alpha,p\gamma)$.
11549.1 ^{<i>a</i>} 4	(10 ⁻)		E		J^{π} : 1524.4 $\gamma \Delta J$ =2 Q to (8 ⁻); 1374.7 $\gamma \Delta J$ =1 d+O to 9 ⁻
11552.6 7	(1) ⁻	<0.2 keV		Р	J^{π} : $(0^+, 1^-, 2^+)$ from $\alpha(\theta)$ in (p, γ) :resonances; 8175 γ and 11551 γ to 0^+ , 5727 γ and 6675 γ to 3^- ; $L(p,p)=1$ in (p, γ) :resonances.
11558.1 7				Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11558.4 7	(1^{+})	<0.2 keV		P S	XREF: S(11556). J ^{π} : M1 excitation in (e,e').
11561.9 7		<0.2 keV		Р	
11569.2 7	(1-,2,3-)	<0.2 keV		Р	J^{π} : 4995 γ and 5835 γ to 1 ⁻ , 6055 γ and 7758 γ to 3 ⁻ .
11574.0 7	$(1-2^{+})$			P	π , from $\alpha(0)$ in (n a))magazananaga
11579.1.8	(1,2) $(1-2^+)$	<0.2 keV		P P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances. I^{π} : from $\alpha(\theta)$ in (p,γ) :resonances
11581.2 7	(1,2)	(0.2 ke (P	
11582.1 7				Р	
11592.9 7		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11593.7 7	(4+ 4 0+)	<0.2 keV		Р	
11595 2	$(4^{\circ} to 8^{\circ})$		М		E(level): from $(\alpha, p\gamma)$. I^{π} : 5186 γ to 6 ⁺
11597.9 7	4+	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances; 9429 γ to 2 ⁺ and 5939 γ to 5 ⁻ ; π =natural from $3^{7}C(p, \alpha)$:res
11599.6 8	(1,2 ⁺)	<0.2 keV		Р	J^{π} : 11598 γ to 0 ⁺ , 5349 γ and 9431 γ to 2 ⁺ , 5742 γ to (2) ⁻ .
11605.8 7	$(1,2^+)$	<0.2 keV		Р	J^{π} : 11604 γ to 0 ⁺ .
11607.3 8				Р	J ^{π} : π =Natural from ³⁷ Cl(p, α):res.
11608 2	$(5^+ \text{ to } 9^+)$		M		E(level): from $(\alpha, p\gamma)$.
11608 3 8	$(1-2^+)$			P	J^{*} : 3531γ to J^{*} . I^{π} : from $\alpha(\theta)$ in (p α) resonances
11609.1 7	(1,2)			P	y . Hold $u(0)$ in (p,y).resonances.
11612.5 7				Р	
11613.2 7				Р	J ^{π} : π =Natural from ³⁷ Cl(p, α):res.
11614.7 ^C 3	11-	4.9 ps 21	EF H LM		J^{π} : 1440.3 $\gamma \Delta J=2$ E2 to 9 ⁻ ; band member.
11(15.0.7	1-	0 42 1 34 16			$T_{1/2}: \text{ from } {}^{27}\text{Al}({}^{14}\text{N}, n2p\gamma).$
11615.8 /	1	0.42 KeV 10		P P	J^{n} : from $\alpha(\theta)$ in (p,γ) :resonances.
11620 2	(7 ⁺ to 11 ⁺)	<0.2 KC V	М	1	E(level): from $(\alpha, p\gamma)$.
11622.7 7		<0.2 keV		Р	J : 10807 10 (9).
11623.5 /	$(1-2^+)$	<0.6 keV		P	I^{π} : from $\alpha(\theta)$ in (n, η) resonances
11630 2	(1,2)	<0.0 KC V	М	1	E(level): from $(\alpha, p\gamma)$.
11641.1 7		<0.2 keV		Р	
11643.3 7	$(1^{-},2^{+})$	<0.6 keV		Р	J ^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11643.4 7				P	
11043.3 /		<0.2 keV		r P	
11650.9 2.3	(9 ⁻)	NU.2 NU V	Е	•	J^{π} : 2301 $\gamma \Delta J=2$ O to (7 ⁻).
11651.4 7	~)		-	Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11652.1 7	(3,4+)	<0.2 keV		Р	J ^{π} : 6057 γ , 7086 γ and 9483 γ to 2 ⁺ , 5442 γ

³⁸Ar Levels (continued)

E(level) [†]	Jπ‡	T _{1/2} #	XREF	Comments
				and 7171 γ to 4 ⁻ , 6302 γ to 4 ⁺ .
11653.98			Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11656.6 7			Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11660.07		<0.2 keV	Р	J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11661 4 7			P	
11665 3 7			P	
11666.6.7		<0.2 keV	P	
11667.8.7		< 0.2 keV	P	
11670 7 7		<0.2 KC V	D	I^{π} , π -natural from ${}^{37}Cl(n, \alpha)$ res
11672.3 8	(3)	<0.2 keV	P	J^{π} : (2,3) from $\gamma(\theta)$ in (p, γ):resonances; 5070 γ to
				4^{-} and 5396 γ to 4^{+} .
11679.6 7			Р	
11682.7 7	(4+)	<0.2 keV	Р	J^{π} : $(4^+, 5^-)$ from $\alpha(\theta)$ in (p, γ) :resonances; 5432 γ and 7117 γ to 2 ⁺ , 7096 γ to 5 ⁻ .
11685.57		<0.2 keV	Р	
11686.07	2+	<0.2 keV	Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11686.9 7			Р	
11695.7 7		<0.2 keV	Р	
11701 8 7		<0.6 keV	Р	I^{π} . π =natural from ³⁷ Cl(n α):res
11703 5 7	$(3^{-}4^{+})$	< 0.2 keV	P	I^{π} 7137 γ and 7766 γ to 2 ⁺ 7117 γ to 5 ⁻
11706 5 7	(5,.)	< 0.2 keV	P	• • • • • • • • • • • • • • • • • • •
11709.2.8		(0.2 he)	P	
11710.0.8			P	
11712 3 8	\mathcal{A}^+	<0.6 keV	P	I^{π} from $\alpha(\theta)$ in (p γ) resonances
11716	(1^+)	(0.0 KC)	, s	I^{π} : M1 excitation in (e e')
1171668	(2^+)	<0.6 keV	Р	I^{π} : 11715 γ 7007 γ and 8339 γ to 0 ⁺ 5507 γ to 4 ⁻ :
11/10.0 0	(2)			π =natural from ³⁷ Cl(p, α):res.
11722.6 8			Р	
11723.4 8	$(0 \text{ to } 3)^{-}$	<0.2 keV	Р	J^{π} : L(p,p)=1 from $3/2^+$ in (p, γ):resonances. (2J+1) Γ_p =0.9 keV 3.
11724.1 8			Р	
11726.08			Р	
11727.8 8	2+		Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11728.2 8			Р	
11731.2 8	(4 ⁺)	<0.6 keV	Р	E(level): probable doublet from (p,γ) :resonances (1974A105)
				I^{π} : $(4^+ 5^-)$ from $\alpha(\theta)$ in $(p \gamma)$:resonances: 6136 γ
				and 7165 γ to 2 ⁺ 6072 γ and 7145 γ to 5 ⁻
11736 5 8			P	I^{π} : π -natural from 3^{7} Cl(n α):res
11737.1.8			P	\mathbf{y} : \mathbf{x} -initial from $\mathbf{Ci}(\mathbf{p}, \mathbf{a})$. Les.
11738 0 8			D	
11720.2.8			I D	I^{π} , π -natural from ${}^{37}Cl(n \alpha)$ iros
11739.3 0			P	J . π -natural from Cr(p, α). les.
11742.9 9	(1)	0.71	P	J ^{<i>r</i>} : π =natural from ^(j) Cl(p, α):res.
11/43.8 8	(1)	0.7 KeV 0	Р	$3/2^+$. Irom $\alpha(\theta)$ in (p,γ) :resonances; $L(p,p)=1$ from $3/2^+$.
11748.5 8		<0.2 keV	Р	
11751.8 8			Р	
11755.6 8	(3 ⁻ ,4 ⁺)	<0.2 keV	Р	J^{π} : 9587 γ and 7818 γ to 2 ⁺ , 7275 γ to 4 ⁻ ; π =natural from ${}^{37}Cl(p,\alpha)$:res.
11758.7 8	(1,3) ⁻		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res; L(p,p)=1 from $3/2^+$.
				$(2J+1)\Gamma_{p}=0.36$ keV 18.
11765.1.8			Р	(, , p
11765.9 8			P	
11766.4.8			Р	J^{π} : π =natural from ³⁷ Cl(p, α):res
				······································

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	XREF	Comments
11767.7 8		<0.2 keV	Р	
11769.98			Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11772.9 8			Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11775.0 8	4+	<0.2 keV	P	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances; 9606 γ to 2 ⁺ , 4486 γ to 6 ⁺ .
11780.7 8	(1,2,3)-	<0.2 keV	Р	J^{π} : 5427 γ to 1 ⁻ , 5955 γ and 6267 γ to 3 ⁻ ; L(p,p)=1 from 3/2 ⁺ . (21+1) $\Gamma_{-}=0.6$ keV 2
11784.1.8	$(1^{-},3^{-})$	<0.2 keV	Р	J^{π} : from $\alpha(\theta)$ in (p, γ) :resonances.
11784.2 8	(1,0)	< 0.2 keV	P	
11788.1 8	2+		Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11790.5 8	(2 ⁺)	<0.2 keV	Р	J^{π} : 11789 γ and 7081 γ to 0 ⁺ , 5581 γ to 4 ⁻ , and 5737 γ to (4 ⁺).
11791.0 8	1-	<0.6 keV	Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
11794.5 8	(1 ⁻ ,2 ⁺ ,3 ⁻ ,4 ⁺)	<0.2 keV	Р	J ^{π} : 9626 γ to 2 ⁺ and 6281 γ to 3 ⁻ ; π =natural from ³⁷ Cl(p, α):res.
11797.9 8	(1 ⁻ ,2,3,4 ⁺)	<0.2 keV	Р	J^{π} : 6203 γ and 7232 γ to 2 ⁺ , 6284 γ and 7987 γ to 3 ⁻ .
11800.1 8	$(1,2^{+})$	<0.2 keV	Р	J^{π} : 11798 γ to 0 ⁺ .
11802.0 8		<0.2 keV	Р	
11805.9 8	3-	<0.2 keV	Р	J ^π : from $\alpha(\theta)$ in (p,γ):resonances; 5556γ to 2 ⁺ , 6722γ to (2) ⁻ , 6456γ to 4 ⁺ , 7325γ to 4 ⁻ .
11810.5 8			Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
11812.2 8	$(1,2^{+})$	<0.2 keV	Р	J^{π} : 11810 γ to 0 ⁺ .
11814.9 8	(1 ⁻)	<0.2 keV	Р	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11819.1 8			Р	J^{π} : π =natural ³⁷ Cl(p, α):res.
11823.1 8	$(3^{-},4^{+})$	<0.2 keV	Р	J^{π} : 5573 γ to 2 ⁺ , 6164 γ and 7237 γ to 5 ⁻ .
11828.7 8			Р	
11832.0 8	3-	<0.2 keV	Р	J ^π : from $\alpha(\theta)$ in (p, γ):resonances; 7266 γ , 7895 γ and 9663 γ to 2 ⁺ , 7245 γ to 5 ⁻ .
11835.0 8			Р	
11836.6 8			Р	
11840.0 <i>3</i>	2+	0.302 keV	PR	E(level): weighted average of 11840.3 8 from (p,γ) :resonances and 11840.0 3 from $(n,n),(n,\alpha)$:resonances.
				J^{α} : from $\alpha(\theta)$ in (p,γ) :resonances; also from ${}^{37}\text{Ar}(n,n),(n,\alpha)$:resonances with L(n)=0 from $3/2^+$.
	a +			Γ from ³⁷ Ar(n,n),(n, α): resonances.
11841.0 3	21	0.267 keV	PR	E(level): weighted average of 11841.3 8 from (p,γ) :resonances and 11841.0 3 from $(n,n),(n,\alpha)$:resonances.
				Γ and J from ³ /Ar(n,n),(n, α):resonances.
11842.2 8			Р	
11842.5 8			Р	
11844.1 8			Р	
11845.8 8			Р	
11849.7 8		<0.2 keV	Р	
11851.3 8			Р	
11851.9 8			Р	
11855.7 8	(1+)		P S	XREF: S(11855). J ^{π} : M1 excitation in (e,e').
11859.4 4	(1 - 2+)		R	
11861.2 8	$(1^-, 2^+)$		P	J^{α} : from $\alpha(\theta)$ in (p,γ) :resonances.
11861.78			Р	

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	2	XREF	Comments
11864.7 8	(1 ⁻ ,3 ⁻)	<0.2 keV		Р	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11865.5 8				Р	-
11873.8 8	(3,4+)	<0.2 keV		Р	J^{π} : 6716 γ and 9705 γ to 2 ⁺ , 5597 γ to 4 ⁺ , 7393 γ to 4 ⁻ .
11875.5 7				R	E(level): from $(n,n),(n,\alpha)$:resonances.
11877.7 8	$(0 \text{ to } 3)^{-}$	0.19 keV 12		Р	J^{π} : L(p,p)=1 from 3/2 ⁺ .
11880.9 8	$(1^{-},3^{-})$	<0.3 keV		Р	J^{n} : from $\alpha(\theta)$ in (p,γ) :resonances.
11882.3 8 11887.8 8	(1,2,3) ⁻	0.50 keV 13		P P	J^{π} : 9719 γ , 7950 γ , 6730 γ and 6293 γ to 2 ⁺ , 6804 γ to (2) ⁻ : L(p p)=1 from 3/2 ⁺
11890 2 10				Р	I^{π} : π =natural from ${}^{37}Cl(p \alpha)$:res
11891.5 8				P	
11894.7 8		<0.2 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α);res.
11898.0 8		<0.3 keV		P	
11901.6 10				P	I^{π} : π =natural from ³⁷ Cl(n, α):res.
11902.3 8		<0.2 keV		P	
11904.6 10				Р	
11905.7 8	(3-,4,5-)			Р	J^{π} : 7028 γ and 8095 γ to 3 ⁻ , 6247 γ and 7319 γ to 5 ⁻ .
11915.4 [@] 7	(10^{+})		Е		J^{π} : 2576.2 $\gamma \Delta J=2 Q$ to 8^+ ; band member.
11916.3 8	. ,			Р	J^{π} : π =natural from ${}^{37}Cl(p,\alpha)$:res.
11917.08		1.73 keV 14		Р	
11918.4 8				Р	
11922.8 8				Р	
11928.0 9	4-	<0.3 keV		PQ	J^{π} : 5326 γ M1(+E2) and 5718 γ M1(+E2) to 4 ⁻ , 6414 γ D(+Q) to 3 ⁻ , 7341 γ D+Q to 5 ⁻ ; possible IAS of 1309, 4 ⁻ in ³⁸ Cl from (³ He,d).
					possible T=2.
11928.4 8	$1^{-},2^{+}$	<0.2 keV		Р	J^{π} : (p, $\alpha(\theta)$).
11935.0 8	4+	<0.2 keV		Р	J^{n} : (p, $\alpha(\theta)$).
11940.2 8		0.51 keV 18		Р	
11943.3 8		0.45 1-11.16		P	
11945.9 8		0.45 KeV 10		P	
11949.0 8		< 0.07 KeV		r D	
11957.40		< 0.2 keV		D	I^{π} : π -natural from ${}^{37}Cl(n \alpha)$:res
11967.8.8		<0.2 KC V		P	$J : \pi$ -natural from $Ci(p, \alpha)$.ites.
11972.0.8				P	
11972.9 8	$(1^{-}.3^{-})$	<0.6 keV		P	J^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
11977.8 8		<0.2 keV		Р	
11982.1 19		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
11995				Р	
11997.5 ^b 12	$(7^{-} \text{ to } 11^{-})$		Е		J^{π} : 1050 γ to (9 ⁻).
11998.7 19		<0.6 keV		Р	J^{π} : π =natural from ³⁷ Cl(p, α):res.
12000	(1^{+})			S	J^{π} : M1 excitation in (e,e').
12003.6		<1.0 keV		Р	
12005.9 19	$(1^{-},3^{-})$	1.0 keV 6		Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12011.9		<1.0 keV		Р	
12013.9		<1.0 keV		Р	
12017.1 19				Р	J ^{π} : π =natural from ³⁷ Cl(p, α):res.
12024.1 19	2+	1.2 keV 6		Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12031.2		<1.0 keV		Р	
12038.6 19	1-			Р	J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.

³⁸Ar Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2} #		XREF		Comments
12042.0 19	$(1^{-},2^{+})$	1.5 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12043.2		2.5 keV		Р		
12053.5 19	2+	<0.6 keV		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12060.7		1.6 keV		Р		
12063.4 19				Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12067.4 19				Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12071.0 19				Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12076.2				Р		
12078.1				Р		
12081.5 19				Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12085.5 19	1-	2.1 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12094.3				Р		
12097.5 19	2+	3.0 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12106.4				Р		
12106.8 <mark>&</mark> 20	(10^{+})		E			J^{π} : 3537 γ to 8 ⁺ ; band member.
12110.6 19		2.6 keV 6		Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12117.3 19	1-	1.1 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12122.6 19	$(1^{-}, 3^{-})$			Р		J^{π} : from $\alpha(\theta)$ in (p, γ):resonances.
12127.5 19	$(1^{-},2^{+})$	1.4 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p,γ) :resonances.
12131.8		2.3 keV		Р		
12134	(1^{+})				S	J^{π} : M1 excitation in (e,e').
12136.1 19	1-	2.3 keV 6		Р		J^{π} : from $\alpha(\theta)$ in (p, γ) :resonances.
12143.1 19		1.1 keV 6		Р		J^{π} : π =natural from ³⁷ Cl(p, α):res.
12146.2				Р		
12149.7				Р		47
12153.1 <i>19</i>				Р		J^{π} : π =natural from ³⁷ Cl(p, α).
12159				Р		
12175.7		3.8 keV		Р		
12185.2				Р		
12188.8				Р		
12199.1	(2-)			Р		
$12.2 \times 10^{5} I$	(3 ⁻)			K		J^{n} : L('He,t)=3 from 0 ⁺ .
12206.4		4 4 1 37		Р		
12215.0		4.4 keV		Р		
12233.2				P		
12259.5				P D		
12230.3				r D		
12290.2				r D		
12325				P		
12343.8				P		
12350.5				P		
12357.3				P		
12364.1				Р		
12368.9				Р		
12369	(1^{+})				S	J^{π} : M1 excitation in (e,e').
12373.4		2.7 keV		Р		
12394	(3 ⁻ ,4,5 ⁻)			Р		J^{π} : 6880 γ and 7516 γ to 3 ⁻ , 6735 γ and 7807 γ to 5 ⁻ .
12405	(3-,4,5-)			Р		J^{π} : 6891 γ and 6579 γ to 3 ⁻ , 7818 γ to 5 ⁻ .
12409.3				Р		
12416				Р		
12420.0				Р		
12441.9		3.5 keV		Р		
12454				Р		

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger} T_{1/2}^{\#}$	XREF	Comments
12459.7		Р	
12468.2		P	
12473.9		P	
12484.0		P	
12489.0		P	
12494 9		P	
12498		P	
12503.7		P	
12509.1		P	
12518		P	
12528.6		Р	
12540.0		Р	
12544.7		Р	
12553.3		Р	
12561.6		Р	
12565.5		Р	
12572.2	3.3 ke	V P	
12577.7	4.1 ke	V P	
12588.3	1.8 ke	V P	
12593.0	1.8 ke	V P	
12598.0	1.8 ke	V P	
12601.4		Р	
12611.3	3.1 ke	V P	
12620.7	3.3 ke	V P	
12631.2	2.4 ke	V P	
12637.8	2.1 ke	V P	
12642.3	4.3 ke	V P	
12656.2	2.4 ke	V P	
12665.2	4.3 ke	V P	
12669.6	4.3 ke	V P	
12672.8	4.3 ke	V P	
12681.7	4.3 ke	V P	
12699		Р	
$12.7 \times 10^3 I$	(3 ⁻)	K	J^{π} : L(⁷ Li,t)=3 from 0 ⁺ .
12706		Р	
12712		Р	
12718	3.3 ke	V P	
12727		Р	
12741		Р	
12746	5.6 ke	P P	
12752	1	Р	
12769	7.8 ke	P P	
12787	10.1.1	Р	
12798	19 keV	Р	
12811		P	
12818		P	
12831	2.0.1	P D	
12839	3.2 ке	v P	
12847		P	
12802		P P	
120//		r D	
12894	10 1-17	P D	
12900	12 KeV	r	
12900		r D	
12921		r D	
12933		r n	
12940		Г	

³⁸Ar Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #		XR	EF			Comments
12948					Р			
12958		12 keV			Р			
12976					Р			
12994					Р			
12999		3.3 keV			Р			
13013					Р			
13022					Р			
13034					Р			
13044					Р			
13070							Х	
13116		39 keV			Р			
13178		21 keV			Р			
13320							Х	
13680							Х	
13683.7 ^a 6	(12 ⁻)		E					J ^π : 2134.9γ ΔJ=2 Q to (10 ⁻), 2068.5 ΔJ=1 d+O to 11 ⁻ .
13891	(1^{+})					S		J^{π} : M1 excitation in (e.e').
13967	(1^+)					S		J^{π} : M1 excitation in (e,e').
14066	(1^+)					S		J^{π} : M1 excitation in (e,e').
14119.7 18	$(8^+, 9, 10, 11^+)$		Е					J^{π} : 4185 γ to (9 ⁺) and 2821 γ to (10 ⁺).
14206	(1^+)					S		J^{π} : M1 excitation in (e,e').
14.3×10 ³ 1	(3 ⁻)			K				J^{π} : L(⁷ Li,t)=3 from 0 ⁺ .
14391.2 ^{&} 10	(12 ⁺)		Е					J^{π} : 2475.7 $\gamma \Delta J=2 Q$ to (10 ⁺); band member.
14877.5 [@] 21	(12^{+})		Е					J^{π} : 2962 γ to (10 ⁺); band member.
14924	(1 ⁻)					S		J^{π} : E1 excitation in (e,e').
15.0×10 ³ 1	$(4^+, 5^-)$			K				J^{π} : L(³ Li,t)=(4,5) from 0 ⁺ .
15393.9 ^c 21	(13 ⁻)		Е					J^{π} : 3779 $\gamma \Delta J=2 Q$ to (11) ⁻ .
17002.3 <mark>&</mark> 14	(14^{+})		E					I^{π} : 2611 γ to (12 ⁺); possible band member.
17780.9^{a} 21	(1.)		Ē					J^{π} : 4097 γ to (12 ⁻).
180702 4	(14^{+})		-					I^{π} : possible 3102 α to (12 ⁺): possible band
18070: 4	(14)		E					member.
18784 <i>30</i>	0^{+}						х	T=3
								J^{π} : L(p,t)=0 from 0 ⁺ .
19770	(8 ⁺)			J				J ^{π} : L=8 from $\alpha(\theta)$ in ³⁴ S(α, α).
19913	(8^{+})			J				J ^{π} : L=8 from $\alpha(\theta)$ in ³⁴ S(α,α).
21662? [@] 5	(16 ⁺)		E					J ^{π} : possible 3592 γ to (14 ⁺); possible band member.

[†] From a least-squares fit to γ -ray energies when γ -ray energy uncertainties are assigned, and others are from (p,γ) :resonances, unless otherwise noted.

* Additional information 46.

[#] Lifetimes and widths are from (p,γ) :resonances, unless otherwise noted. Some lifetime measurements are from $(\alpha,p\gamma)$ and a few from other γ -ray reactions.

[@] Band(A): 2⁺ band 1. [&] Band(B): 2⁺ band 2.

^a Band(C): Band based on (6⁻).

^b Seq.(D): γ sequence based on 3⁻.

^c Seq.(E): γ sequence based on 5⁻.

						Adopt	ed Levels, Ga	mmas (con	ntinued)
							$\gamma(^{38}A)$	Ar)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ #	$\mathbf{I}_{(\gamma+ce)}$	Comments
2167.472	2+	2167.405 12	100	0.0	0+	E2			B(E2)(W.u.)=3.40 <i>16</i> E _γ : weighted average of 2167.400 9 from ³⁸ Cl β ⁻ decay (37.230 m), 2167.5 <i>3</i> from ³⁸ K ε decay (7.651 m), 2167.5 <i>5</i> from (²⁸ Si,α2pγ), 2167.53 <i>5</i> from (¹⁴ N,n2pγ), 2167.61 <i>14</i> from (p,γ):resonances, and 2167 <i>1</i> from (π ⁻ ,pnγ). Mult.: from $\gamma(\theta,\text{pol})$ in (p,γ):resonances, (¹⁴ N,n2pγ), and
3376.9	0^+	1209.4 3	100	2167.472	2+	E2			$({}^{16}O, \alpha p \gamma)$. B(E2)(W.u.)=1.26 8 E _γ : weighted average of 1209.8 4 from (${}^{14}N, n2p \gamma$), 1210 <i>I</i> from
		3376.7		0.0	0+	E0		0.66 10	(α, γ) :resonances, and 1209.1 <i>3</i> from (p, γ) :resonances. Mult., $I_{(\gamma+ce)}$: E0 decay by e ⁺ e ⁻ pair (1975So11) in $(\alpha, p\gamma)$. q ² _k (E0/E2)=0.81 <i>12</i> , X(E0/E2)=0.51 <i>8</i> , ρ^2 (E0)=0.018 <i>3</i> (2005Ki02 evaluation)
3810.18	3-	1642.66 <i>3</i>	100.00 20	2167.472	2+	E1(+M2)	+0.016 13		B(E1)(W.u.)=0.0024 +8-5 E _γ : weighted average of 1642.68 2 from ³⁸ Cl β ⁻ decay (37.230 m), 1642.7 4 from (²⁸ Si,α2pγ), 1642.4 3 from (¹⁶ O,2pγ), 1642.42 10 from (¹⁴ N,n2pγ), 1642.31 14 from (p,γ):resonances, and 1643 1 from (π ⁻ ,pnγ). I _γ : from ³⁸ Cl β ⁻ decay. Mult.: from γ(θ,pol) in (¹⁶ O,2pγ), (p,γ):resonances and (¹⁴ N,n2pγ); Mult.=E1 with ΔJ=1 is also supported by γ(θ,pol) in (¹⁶ O,αpγ), γ(DCO) in (²⁸ Si,α2pγ) and γγ(θ) in ³⁸ Cl β ⁻ decay.
		3810.01 7	0.079 6	0.0	0^{+}	[E3]			$ δ: from ({}^{16}O,2pγ). Other: +0.01 2 from (p,γ):resonances. B(E3)(W.u.)=17 +8-5 E. L.: from {}^{38}Cl e^{-} decay.$
3936.5	2+	559.6 [@] 1770 <i>1</i>	<0.32 7.1 <i>6</i>	3376.9 2167.472	0+ 2+				E_{γ}, I_{γ} . From CF β decay. E_{γ} : weighted average of 1769 <i>I</i> from (²⁸ Si, α 2p γ) and 1771 <i>I</i> from (α,γ):resonances. I_{γ} : weighted average of 10 5 from (²⁸ Si, α 2p γ), 11 6 from ($\alpha,p\gamma$),
		3936.1 <i>5</i>	100.0 <i>6</i>	0.0	0+	[E2]			and 7.0 6 from (p,γ) :resonances. B(E2)(W.u.)=1.71 +24-19 E _{γ} : weighted average of 3935.6 5 from ³⁸ K ε decay (7.651 m), 3938 2 from (²⁸ Si, α 2p γ), 3936.1 7 from (¹⁴ N,n2p γ), 3938 3 from (α , γ):resonances, 3936.1 5 from (p,γ):resonances, and 3937 1 from (π -,pn γ).
4479.98	4-	669.78 8	100	3810.18	3-	M1(+E2)	+0.011 13		I_{γ} : from (p,γ):resonances. B(M1)(W.u.)=0.076 +20-16 E _γ : weighted average of 669.6 2 from (²⁸ Si,α2pγ), 669.6 3 from

25

 $^{38}_{18}\mathrm{Ar}_{20}$ -25

					Adopte	d Levels, G	ammas (continued)
						$\gamma(^{38}\text{Ar})$ ((continued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	$E_f = J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments
							(¹⁶ O,2py), 669.87 8 from (¹⁴ N,n2pγ), 670 <i>1</i> from (α , γ):resonances, 669.58 <i>14</i> from (p, γ):resonances, and 671 <i>1</i> from (π^- ,pn γ). Mult.: from $\gamma(\theta$,pol) in (¹⁶ O,2p γ), (¹⁴ N,n2p γ) and (p, γ):resonances, with Δ J=1; D+Q from γ (DCO) in (²⁸ Si, α 2p γ) and M1 from $\gamma(\theta$,pol) in (¹⁶ O, α p γ). δ : from (¹⁶ O,2p γ). Other: +0.01 2 from (p, γ):resonances.
4565.5	2^{+}	629.0	2.0 3	3936.5 2+			
		755.3 1188.6 [@]	1.9 <i>3</i> <0.8	$3810.18 3^{-}$ $3376 9 0^{+}$	[E1]		B(E1)(W.u.) = 0.00070 + 20 - 17
		2398.1 5	100.0 4	2167.472 2+			E_{γ} : from (p,γ) :resonances.
		4565.2 [@]	<2	$0.0 0^+$			
4585.87	5-	105.894 12	100.0 11	4479.98 4-	M1(+E2)	-0.02 3	B(M1)(W.u.)=0.1246
							E_{γ} : weighted average of 105.9 <i>I</i> from (²⁰ S1, α 2p γ), 105.894 <i>I</i> 2 from (¹⁶ O,2p γ), 105.92 <i>I0</i> from (¹⁴ N,n2p γ), and 105.5 4 from (p, γ):resonances. Mult. δ : from $\gamma(\theta$.pol) in (p, γ):resonances.
		775.70 16	12.5 12	3810.18 3-	E2		B(E2)(W.u.)=0.223 20
							E_{γ} : weighted average of 775.5 <i>3</i> from (²⁸ Si,α2pγ), 775.79 <i>13</i> from (¹⁴ N,n2pγ), and 774.9 5 from (p,γ):resonances.
							I_{γ} : weighted average of 13.3 <i>I2</i> from (²⁰ S1, α 2p γ), 16.0 <i>20</i> from (¹⁴ N,n2p γ), and 11.0 <i>I0</i> from (p, γ):resonances.
		2418.3	0.45 11	2167.472 2+	[E3]		B(E3)(W.u.)= $0.88 + 28 - 25$
4709.3	0^+	772.8 9	100	3936.5 2+	[E2]		$B(E2)(W.u.) = 1.6 \times 10^2 + 11 - 9$
							E _{γ} : weighted average of 773.3 5 from (p, γ):resonances and 771 <i>1</i> from $(\pi^-, \text{pn}\gamma)$.
4877.0	3-	940.5 [@]	<4	3936.5 2+			
		1066.8 3	100.0 8	3810.18 3	M1(+E2)	+0.03 7	B(M1)(W.u.)=0.27 + 10-6 E : from (p-a) resonances
							Mult., δ : from $\gamma(\theta, pol)$ in (p, γ) :resonances; D(+Q) from $\gamma(\theta)$ in $(\alpha, p\gamma)$ with $\delta = +0.16 + 10 - 16$ or $0.0 + 3 - 1$.
		1500.1@	<2	3376.9 0+			
		2709.4	91.2 8	2167.472 2+	E1+M2	+0.10 7	B(E1)(W.u.)=0.00040 + 15 - 10; B(M2)(W.u.)=2.5 + 73 - 24
							E_{γ} : from (p,γ) :resonances. Mult., δ : from $\gamma(\theta,pol)$ in (p,γ) :resonances; D+Q from $\gamma(\theta)$ in $(\alpha,p\gamma)$ with $\delta = -0.30 + 7 - 14$ or -2.7 3.
		4876.7 [@]	<8	0.0 0+			
5083.6	$(2)^{-}$	1273.4	7.3 5	3810.18 3-	11212		$D(E_1)(W_{12}) = 0.00056 + 22 - 12$
		2910 I 5083 2 [@]	100.0 5	2107.472 2	[E1]		D(E1)(W.U.)=0.00030+22-13
		5005.2	 	0.0 0			

26

L

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
5157.3	2+	677.3 [@]	<4	4479.98	4-		
		1220.8	42 6	3936.5	2+		
		1347.1	25 4	3810.18	3-	[E1]	B(E1)(W.u.)=0.0014 + 11-6
							I_{γ} : other: 39 7 in (α ,p γ).
		2989.7	100 4	2167.472	2^{+}		
		5156.9	25 8	0.0	0^{+}	[E2]	B(E2)(W.u.)=0.11 + 11-6
5349.4	4+	784 <i>1</i>	2.5 13	4565.5	2^{+}	[E2]	B(E2)(W.u.)=27+35-18
							E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		869.4 [@]	<3	4479.98	4-		
		1413.1 4	50 <i>3</i>	3936.5	2^{+}	[E2]	B(E2)(W.u.)=28 + 16 - 9
							E_{γ} : from (²⁸ Si, α 2p γ).
							I_{γ} : weighted average of 48 4 from (²⁸ Si, α 2p γ), 54 9 from (α ,p γ), and 50.3 26 from
							(p,γ) :resonances.
		1539 <i>1</i>	12.7 21	3810.18	3-	[E1]	$B(E1)(W.u.)=9\times10^{-5}+7-4$
							E_{γ} : from (²⁸ Si, α 2p γ).
							I_{γ} : weighted average of 11.3 25 from (²⁸ Si, α 2p γ) and 13.6 21 from (p, γ):resonances.
		3182.2 7	100 5	2167.472	2^{+}	E2	B(E2)(W.u.)=1.0+5-3
							E_{γ} : weighted average of 3183 2 from (²⁸ Si, α 2p γ) and 3182.1 7 from (¹⁴ N,n2p γ).
							Mult.: Q from γ (DCO) in (²⁸ Si, α 2p γ); M2 ruled out by RUL.
		5349.0 [@]	<5	0.0	0^{+}		
5513.3	3-	636.3	38.2 13	4877.0	3-		
		947.8	<4	4565.5	2^{+}		
		1033.3 4	100 4	4479.98	4^{-}		
		1576.8 [@]	6	3936.5	2^{+}		
		1703.1	14.3 17	3810.18	3-		
		2136.3 [@]	<4	3376.9	0^{+}		
		3345.7	54 <i>4</i>	2167.472	2+	[E1]	$B(E1)(W.u.)=2.0\times10^{-5}+14-7$
		5512.9@	<12	0.0	0^{+}		
5552.21	$1^{+}.2^{+}$	986.7	53.5	4565.5	2+		
0002121	- ,-	1615.7	100.8	3936.5	$\frac{-}{2^{+}}$		
		$1742.0^{@}$	< 8	3810.18	3-		
		3384.6	68.8	2167.472	2^{+}		
		5551.8	30.8	0.0	$\bar{0}^{+}$		
5594.6	2+	1029.1	62 5	4565.5	2^{+}		
		$1114.6^{@}$	<8	4479.98	4^{-}		
		1658.1	100 8	3936.5	2^{+}		
		$1784.4^{@}$	<18	3810.18	3-		
		2217.6	39.5	3376.9	0^{+}	[E2]	B(E2)(W.u.) = 3.3 + 26 - 13
			0,0	22.017	Ŭ	[]	

						Adopted L	evels, Gam	mas (continued)
						<u> </u>	(³⁸ Ar) (con	tinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	δ#	Comments
5594.6	2+	5594.2	56 5	0.0	0^{+}	[E2]	0.40.0	B(E2)(W.u.)=0.047 + 34 - 17
5658.61	5-	10/2.8 3	100.0 6	4585.87	5	M1(+E2)	-0.10 9	B(M1)(W.u.)=0.54 + 12 - 14
								E _γ : weighted average of 10/3.2 4 from (²⁶ S1,α2pγ), 10/2.5 4 from (¹⁶ O,2pγ), 1072.7 3 from (¹⁴ N,n2pγ), and 1072.7 3 from (p,γ):resonances. Mult.,δ: from $\gamma(\theta,\text{pol})$ in (p,γ):resonances with $\Delta J=0$, also supported by
								γ (DCO) in (²⁸ Si, α 2p γ).
		1178.6 6	9.4 4	4479.98	4-			E_{γ} : from (²⁸ Si, α 2p γ).
		_						I _{γ} : from (p, γ):resonances. Other: 9.7 <i>14</i> from (²⁸ Si, α 2p γ).
		1722.1 [@]	<0.6	3936.5	2+			
		1848.4	2.5 4	3810.18	3-	[E2]		B(E2)(W.u.)=2.6 + 11 - 8
		3491.0 [@]	<0.6	2167.472	2+			
5733.9	1-	5733.4		0.0	0^{+}	[E1]		B(E1)(W.u.)>0.00079
5824.9	3-	741.3	25 3	5083.6	$(2)^{-}$			
		947.9	50 0 50 6	4877.0	3 4-			
		2014 7	100 10	3810 18	4 3-			
		3657.2	72.10	2167 472	2^{+}	[E1]		$B(E1)(W_{II}) = 1.1 \times 10^{-5} + 23 - 9$
		$5824.4^{@}$	<25	0.0	0^{+}			$D(D1)((0,0)=1.1\times10^{-1}+25^{-1})$
5857.5	$(2)^{-}$	980.5	11.0 11	4877.0	3-			
	(-)	$1292.0^{@}$	<12	4565 5	2+			
		$1920.9^{(0)}$	<2.4	3936.5	2+			
		2047.3	100.0 21	3810.18	3-			
		$2480.5^{\textcircled{0}}$	<4	3376.9	0^{+}			
		3689.8	11.1 17	2167.472	2+	[E1]		$B(E1)(W.u.)=6.9\times10^{-5}+39-24$
5974.8	$(0^{+} \text{ to } 3^{-})$	817.5	8.8 13	5157.3	2^{+}			
		1409.3	30 <i>3</i>	4565.5	2^{+}			
		1494.8 [@]	<3	4479.98	4-			
		2038.2	17.3 22	3936.5	2+			
		3807.1	100 5	2167.472	2+			
		5974.3 [@]	<5	0.0	0^{+}			
6041.8	$(3^{-},4^{+})$	1164.8 [@]	<5	4877.0	3-			
		1455.9	18 3	4585.87	5-			
		1476.3 [@]	<5	4565.5	2+			
		1561.8	55 5 100 5	4479.98	4 2-			
		2231.3	100 J	2167 472	3 2+			
		38/4.1	<10	2107.472	Z .			
				~ ~ ~				

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -28

L

						Adopt	ed Levels, G	ammas (continued)
							$\gamma(^{38}\text{Ar})$ ((continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
6053.2	(4 ⁺)	703.9 <i>3</i> 1488 <i>1</i>	100 6 32 4	5349.4 4565.5	$\frac{4^{+}}{2^{+}}$	[E2]		E _γ : from (²⁸ Si,α2pγ). B(E2)(W.u.)=25 +13-8 E _γ : from (²⁸ Si,α2pγ).
		1573.2 2116 <i>1</i>	13 <i>4</i> 41 6	4479.98 3936.5	4- 2 ⁺	[E1] [E2]		I_{γ} : other: 18.5 from (²⁰ S1,α ² pγ). B(E1)(W.u.)=0.00015 +11-7 B(E2)(W.u.)=5.5 +27-17 E_{γ} : from (²⁸ S1,α ² pγ). L.: other: 27.9 from (²⁸ S1,α ² pγ).
6209.4	4-	1623.5 1729.4 <i>6</i>	8.0 <i>10</i> 100.0 <i>10</i>	4585.87 4479.98	5- 4-	M1+E2	-0.32 10	B(M1)(W.u.)=0.047 +24-15; B(E2)(W.u.)=6 +8-4 Mult., δ : D+Q from $\gamma(\theta)$ in (p, γ):resonances; M2 is ruled out by RUL.
		2272.8 [@] 4041.7 [@] 6208.9 [@]	<1 <2 <1	3936.5 2167.472 0.0	2^+ 2^+ 0^+			
6213.8	(2+)	1733.8 [@] 2277.2 4046.1	<4 17 <i>3</i> 26 <i>3</i>	4479.98 3936.5 2167.472	4^{-} 2^{+} 2^{+} 2^{+}			
6249.9	2+	6213.3 900.5 1092.6 1684.4	100 4 16.9 26 10.6 22 100 8	0.0 5349.4 5157.3 4565.5	$ \begin{array}{c} 0^{+} \\ 4^{+} \\ 2^{+} \\ 2^{+} \\ \end{array} $			
(27()	4+	2313.3 ^(a) 2439.6 ^(a) 2872.9 4082.2 6249.3 ^(a)	<10 <6 20 6 49 8 <6	3936.5 3810.18 3376.9 2167.472 0.0	2^+ 3^- 0^+ 2^+ 0^+ 4^+			
6276.1	4'	926.7 1796.1 2339.5 2465.8 [@]	57 8 16 6 31 8 <10	5349.4 4479.98 3936.5 3810.18	4 ⁻ 2 ⁺ 3 ⁻	[E1] [E2]		B(E1)(W.u.)= $9 \times 10^{-5} + 17 - 6$ B(E2)(W.u.)= $1.9 + 28 - 10$
		2899.1 ^w 4108.4 6275.5 [@]	<6 100 <i>6</i> <8	3376.9 2167.472 0.0	0^+ 2^+ 0^+	[E2]		B(E2)(W.u.)=0.36 +42-15
6338.6	1-,2-,3-	1461.6 2528.3 2961.6 4170.9	86 <i>12</i> 100 <i>12</i> <17 100 <i>12</i>	4877.0 3810.18 3376.9 2167.472	3^{-} 3^{-} 0^{+} 2^{+}	(F1)		B(E1)(Wu)>0.00018
6353.5	1-	6352.9	100 12	0.0	0^{+}	[E1] [E1]		B(E1)(W.u.) > 0.00018 B(E1)(W.u.) = 0.00065 + 41 - 18

29

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -29

L

						Adopted L	evels, Gamma	s (continued)
						γ	(³⁸ Ar) (contin	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	Comments
6408.32	6+	749.9 4	0.55 18	5658.61	5-	[E1]		$B(E1)(W.u.) = 8 \times 10^{-6} + 7 - 4$
		1058 <i>1</i>	3.3 4	5349.4	4+	[E2]		E_{γ},I_{γ} : from (*0,2p γ). B(E2)(W.u.)=1.8 +12-6
		1822.40 5	100 4	4585.87	5-	E1(+M2)	+0.007 10	 E_γ,I_γ: from (¹⁶O,2pγ). B(E1)(W.u.)=0.00010 +4-2 E_γ: weighted average of 1823.3 4 from (²⁸Si,α2pγ), 1822.39 16 from (¹⁶O,2pγ), and 1822.39 3 from (¹⁴N,n2pγ). I_γ: from (¹⁶O,2pγ).
								Mult., δ : from $\gamma(\theta, \text{pol})$ and $\gamma(\text{DCO})$ in (¹⁶ O,2p γ) with $\Delta J=1$, also supported by $\gamma(\theta, \text{pol})$ in (¹⁴ N,n2p γ) and $\gamma(\text{DCO})$ in (²⁸ Si, α 2p γ).
6476.6	$(0^+ \text{ to } 3^-)$	1599.6 [@]	<3	4877.0	3-			
		1911.0	100 3	4565.5	2+ 4-			
		1990.0°	<10	4479.98 3036 5	4 2+			
		2540.0	<11	3810.18	2 3-			
		$3099.6^{@}$	<15	3376.9	0^{+}			
		4308.9 [@]	43.3	2167.472	2+			
		6476.0 [@]	<13	0.0	0^{+}			
6485.4	$(1^{-},2,3^{-})$	2548.8 [@]	<7	3936.5	2^{+}			
		2675.1	67 8	3810.18	3-			
		3108.4 [@]	<7	3376.9	0^{+}			
		4317.7	100 8	2167.472	2+			
6405.8	$(2^{-} 2^{-})$	6484.8 [®]	<10	0.0	0^+ 2 ⁻			I_{γ} : other: $I_{\gamma}(6485)/I_{\gamma}(4318) = 100 \ I_{3}/33 \ I_{3}$ in (α, γ) :resonances.
0495.0	(2,5)	1010.0 1930 2 [@]	<5	4565 5	2+			
		2015.8	45 5	4479.98	$\frac{2}{4^{-}}$			
		2559.2	31 5	3936.5	2^{+}			
		2685.5	100 10	3810.18	3-			
		3118.8 [®]	<5 10.5	3376.9	0^+ 2+			
		4328.1	19 J ~7	0.0	2 0+			
6574 3	1-	$2094.3^{@}$	<25	4479 98	4-			
0577.5	T	$2637.7^{@}$	<4	3936 5	- 2+			
		$2764.0^{@}$	<6	3810.18	- 3-			
		3197.3 [@]	<4	3376.9	0^{+}			
		4406.6	27.4	2167 472	$\tilde{2}^+$	[F1]		$B(E1)(W_{11}) > 0.00032$

 $^{38}_{18}\mathrm{Ar}_{20}$ -30

L

From ENSDF

					Adopted Lev	els, Gamm	as (continued)
					$\gamma(^{33}$	⁸ Ar) (contin	nued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_f \qquad J_f^{\pi}$	Mult. [#]	$\delta^{\#}$	Comments
6574.3 6601.59	1 ⁻ 4 ⁻	6573.7 1724.5 2015.7 2121.55 <i>21</i>	100 4 21.9 22 3.0 5 100.0 24	$\begin{array}{c cccc} 0.0 & 0^+ \\ 4877.0 & 3^- \\ 4585.87 & 5^- \\ 4479.98 & 4^- \end{array}$	[E1] M1(+E2)	-0.05 8	B(E1)(W.u.)>0.00040 B(M1)(W.u.)=0.15 +4-3 Mult δ : $\Delta I=0$ from $\gamma(\theta)$ in (p $\gamma)$);resonances and BUI
6621.6	(1 ⁻ ,2,3 ⁻)	2791.3 2056.0 2141.6 [@] 2685.0 2811.3 4453.8	1.1 4 80 5 <10 39 5 39 5 100 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
6674.4	5-	6621.0 [@] 2088.6 <i>3</i>	<23 100 <i>4</i>	$\begin{array}{ccc} 0.0 & 0^+ \\ 4585.87 & 5^- \end{array}$	M1		 B(M1)(W.u.)=0.14 +7-4 E_γ: weighted average of 2088.7 6 from (²⁸Si,α2pγ) and 2088.6 3 from (¹⁶O,2pγ). Mult.: D with ΔJ=0 from γ(θ) in (p,γ):resonances and γ(DCO) in (²⁸Si,α2pγ); magnetic polarity from no level-parity change determined based on L-transfer data
		2194.4	21 4	4479.98 4-			based on L-transfer data.
6681.6 6772 7	(0,1,2)	2737.8 6673.8 947.7 2292.6	<5 <10 100 <10	3936.5 2+ 0.0 0+ 5733.9 1- 4479.98 4-			
0772.7	1	2292.0 2836.1 3395.6 [@] 4604.9 [@]	<10 41 7 <8 <10	$\begin{array}{cccc} 3936.5 & 2^{+} \\ 3376.9 & 0^{+} \\ 2167.472 & 2^{+} \end{array}$	[E1]		B(E1)(W.u.)>0.0019
6824.0	(2+,3-)	6772.1 2258.4 [@] 2343.9 [@] 3013.7	100 7 <9 <3 47 7	0.0 0 ⁺ 4565.5 2 ⁺ 4479.98 4 ⁻ 3810.18 3 ⁻	[E1]		B(E1)(W.u.)>0.00038
6824.1	(0 ⁺ to 4 ⁺)	3446.9 [@] 4656.2 6823.3 [@] 2258.5 2887.5 3013.8 [@]	<12 100 8 <7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
6846	(0 ⁻ to 4 ⁻)	4656.3 [©] 1762	100	$\begin{array}{cccc} 2167.472 & 2^+ \\ 5083.6 & (2)^- \end{array}$			

31

L

						Adopt	ted Levels, Gan	amas (continued)
							$\gamma(^{38}\text{Ar})$ (con	ntinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\texttt{\#}}$	Comments
6852	(1,2 ⁺)	2286 3475 6851	33 <i>10</i> 100 <i>13</i> 33 <i>10</i>	4565.5 3376.9	$\frac{2^{+}}{0^{+}}$			
6869.9	(2 ⁻ ,3,4 ⁺)	X	55 10	0.0	0			I_{γ} : 30% γ branching is unobserved. Additional information 47.
		1992.8 2304.3 [@]	67 <i>17</i> <13	4877.0 4565.5	3- 2+			
		2933.3 ^w 3059.6	<13 100 <i>17</i>	3936.5 3810.18	2^+ 3^-			
		3492.8° 4702.1	<27 67 17	3376.9 2167.472				
6903.8	2-,3-	2423.7 2967.2 4736.0	$< 30 \\ 11 3 \\ 23 3 \\ 100 4$	4479.98 3936.5 2167.472		[E1] [E1]		B(E1)(W.u.)=0.00063 +48-24 B(E1)(W.u.)=0.00068 +41-20
6947.9	(2+)	2070.8 [@] 2382.3 [@]	<8 <14	4877.0 4565.5	3- 2+			
		3137.6 [@] 3570.8 4780.1	<9 100 5 54 5	3810.18 3376.9 2167.472	3 ⁻ 0 ⁺ 2 ⁺			I _{γ} : other: 100 <i>13</i> from (α ,p γ). I _{γ} : other: 59 <i>10</i> from (α ,p γ).
7046	(3 ⁻ ,4 ⁺)	6947.2 [@] 2566 3236 4878	<14 56 <i>15</i> 100 <i>9</i> 19 <i>4</i>	0.0 4479.98 3810.18 2167.472	0^+ 4^- 3^- 2^+			
7070.19	(6) ⁻	2483.9 4	100 10	4585.87	5-	M1+E2	+0.53 +3-9	B(M1)(W.u.)=0.020 +10-5; B(E2)(W.u.)=3.1 +17-13 E_{γ} : weighted average of 2483.9 6 from (²⁸ Si, α 2p γ) and 2483.9 4 from (¹⁶ O,2p γ). I_{γ} : from (²⁸ Si, α 2p γ).
								Mult.: D+Q from γ (DCO) in (²⁰ S1, α 2p γ) and γ (θ) in (α ,p γ); M2 is ruled out by RUL.
7100.8	(1 ⁻ to 4 ⁺)	2590 <i>1</i> x	11 2	4479.98	4-			o: noin (α, pγ). Other: $\approx +0.5$ from ($^{-5}$ Si, $\alpha 2$ pγ). E _γ , I _γ : from (28 Si, $\alpha 2$ pγ). I _γ : 30% γ branching is unobserved. Additional information 48.
7128	(1 ⁻ to 4 ⁺)	4933.0 3318 4960	100 100 <i>10</i> 41 8	2167.472 3810.18 2167.472	2^+ 3^- 2^+			
7181 7192.2	$(1,2^+)$ $(2^-,3,4)$	7180 2315.1	100 27 <i>3</i>	0.0 4877.0				

32

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -32

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
7192.2	$(2^{-},3.4)$	2626.6 [@]	<8	4565.5	2+		
/ 1/ 11	(= ,0,1)	2712.1	100 7	4479.98	4-		
		3255.6 [@]	<5	3936.5	2^{+}		
		3381.9	32 3	3810.18	3-		
		3815.1 [@]	<6	3376.9	0^{+}		
		5024.4 [@]	<6	2167.472	2^{+}		
		7191.5 [@]	<6	0.0	0^{+}		
7233.8	$(1^{-} \text{ to } 4^{+})$	5066.0	100	2167.472	2^{+}		
7236	(2+)	Х					I_{γ} : 50% γ absolute branching is unobserved. Additional information 49.
		7235	100 10	0.0	0^{+}		
7288.32	6+	879.9 <i>3</i>	11 4	6408.32	6+		E_{γ} : from (²⁸ Si, α 2p γ).
							I _y : unweighted average of 15.4 13 from (²⁸ Si, α 2py) and 7.0 10 from (α ,py).
		1236 <i>1</i>	5.1 13	6053.2	(4^{+})	[E2]	B(E2)(W.u.)=33+53-18
							E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$).
		1939.4 7	100 4	5349.4	4+	E2	$B(E2)(W.u.)=7\times10^{1}+7-3$
							E_{γ} : from (²⁰ S1, α ² p γ).
							I_{γ} : from $(\alpha, p\gamma)$. Other: 100 8 from $(2^{\circ}S1, \alpha 2p\gamma)$.
		2704 1	31.3	4585 87	5-	(F1)	R(F1)(W μ) = 0.00024 ± 29=10
		27011	515	1505.07	5	[[[]]]	E_{ac} : from (²⁸ Si α 2py).
							I_{γ} : weighted average of 33.3 26 from (²⁸ Si. α 2p γ) and 27 4 from (α .p γ).
7289.6	$(3^{-},4^{+})$	х					I_{γ} : 37% γ absolute branching is unobserved.
							Additional information 50.
		3479.2	100 8	3810.18	3-		
7334	$(1^{-} \text{ to } 4^{+})$	3524	100 17	3810.18	3-		l_{γ} : from $(\alpha, p\gamma)$ only.
7350	$(3^{-} 4^{+})$	5100 1100	0/1/ 46.10	2107.472 6240.0	2 · 2+		I_{γ} : Irom $(\alpha, p\gamma)$ only. E. L: from $(\alpha, p\gamma)$ only.
7550	(3,4)	2764	98 10	4585 87	5-		E_{γ}, I_{γ} . Holl (α, p_{γ}) only. E_{α} L_{α} : from (α, p_{γ}) only
		2870	100 10	4479.98	4^{-}		E_{γ},I_{γ} : from $(\alpha,p\gamma)$ only.
7370	(1^{+})	х					I_{γ} : 50% γ absolute branching is unobserved.
							Additional information 51.
5054	(2+ 2 (+)	7369	100 20	0.0	0^+		
/3/6	(2+,3,4+)	1126	45 10	6249.9 5240.4	21		E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
7431.0	$(2^{-} 3 4^{+})$	2027 v	100 2	3349.4	4		$E_{\gamma,l\gamma}$. Holli ($(\alpha,p\gamma)$). L : 45% α absolute branching is unobserved
1.1.0	(2,3,7)	л					Additional information 52.
		5263.1	100 9	2167.472	2^{+}		
7452	$(1^{-} to 4^{+})$	Х					I_{γ} : 25% γ absolute branching is unobserved. Additional information 53.

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
7452	$(1^{-} \text{ to } 4^{+})$	2575	36 9	4877.0	3-		
		5284	100 9	2167.472	2^{+}		
7485	$(3^{-},4^{+})$	1826	100	5658.61	5-		
7491.3	(6 ⁺)	1438 <i>1</i>	100 8	6053.2	(4^{+})		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
		1833 <i>1</i>	33 8	5658.61	5-		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
		2142 1	46 8	5349.4	4+		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
7497	(3,4,5 ⁻)	Х					I_{γ} : 20% γ absolute branching is unobserved in (α ,p γ). Additional information 54.
		1444	100 10	6053.2	(4^{+})		I_{γ} : from $(\alpha, p\gamma)$.
		3017	58 10	4479.98	4-		I'_{γ} : from $(\alpha, p\gamma)$.
		3687 <i>3</i>	22 6	3810.18	3-		\vec{E}_{γ} : from (α, γ) :resonances.
							I_{γ} : from $(\alpha, p\gamma)$.
7508.12	7-	437.8 2	8.8 11	7070.19	$(6)^{-}$	(M1+E2)	E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ) only.
							Mult.: D+Q with $\Delta J=1$ in (²⁸ Si, $\alpha 2p\gamma$) based on DCO=0.82 <i>15</i> , which however is also consistent with $\Delta J=2$ or $\Delta J=0$; $\Delta J<2$ is also favored by RUL. Note that in $(\alpha, p\gamma)$, $J^{\pi}=5^{-}$ is assigned to the daughter level at 7070 based on RUL and $\gamma(\theta)$. See comments for 7070 level.
		1100 1	2.2 11	6408.32	6+		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ) only.
		1850 <i>1</i>	8 <i>3</i>	5658.61	5-	[E2]	B(E2)(W.u.)<7.9
		2022 6 6	100 6	1505 07	<i>ב</i> –	E2	E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$). Other: $I\gamma=3$ 2 in ($\alpha, p\gamma$), <4 in (¹⁶ O, 2p\gamma).
		2922.6 6	100 8	4383.87	2	E2	 B(E2)(W.d.)<7.4 E_γ: unweighted average of 2923 <i>I</i> from (²⁸Si,α2pγ), 2923.2 <i>4</i> from (¹⁶O,2pγ), and 2921.5 <i>3</i> from (¹⁴N,n2pγ). I_γ: from (²⁸Si,α2pγ). Mult.: from γ(θ,pol) in (¹⁶O,2pγ), also supported by γ(DCO) in (²⁸Si,α2pγ) and γ(θ) in (¹⁴N,n2pγ).
7528	$(3^{-} \text{ to } 7^{-})$	1869	53	5658.61	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
	. ,	2942	100 3	4585.87	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7539	(3,4,5)	1486 3059		6053.2 4479.98	(4 ⁺) 4 ⁻		
7628?	$(1,2^+)$	7628 8		0.0	0^{+}		E_{γ} : from (α, γ) :resonances.
7648?	$(1,2^+)$	7648 8		0.0	0^{+}		
7663	$(2^+ \text{ to } 6^+)$	2314	100	5349.4	4+		
7667	(3 ⁻ to 7 ⁻)	993	52 9	6674.4	5-		E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
-	(2.1)	2008	100 14	5658.61	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7683	$(3^{-},4^{+})$	3203	100 11	447/9.98	4 ⁻		I_{γ} : from $(\alpha, p\gamma)$. Other: 100 <i>I</i> / from (p, γ) :resonances.
		38/3	49 11	3810.18	3 2+		I_{γ} : from $(\alpha, p\gamma)$. Other: <10 from (p, γ) :resonances.
7702	(1^{+})	5524	03 9 100 14	2107.472	2 · 2+		i_{γ} : weighted average of 64.9 from $(\alpha, p\gamma)$ and 6/1/ from (p, γ) :resonances.
//02	(1)	7701	43 14	0.0			E_{γ},I_{γ} . from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$.

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
7786	$(2^{-} \text{ to } 6^{-})$	1744	100 11	6041.8	$(3^{-},4^{+})$			$E_{\gamma}I_{\gamma}$: from $(\alpha, p\gamma)$.
	(,	3306	85 11	4479.98	4-			E_{γ}, γ' from $(\alpha, p\gamma)$.
7828	$(1^{-} \text{ to } 5^{-})$	4018	100	3810.18	3-			E_{γ} , F_{γ} : from $(\alpha, p\gamma)$.
7857	$(1^{-},2^{+})$	4047	100 25	3810.18	3-			$E_{\alpha}L_{\alpha}$; from $(\alpha, p\gamma)$.
	< <i>, , ,</i>	5689	75 25	2167.472	2+			E_{γ} , I_{γ} : from $(\alpha, p\gamma)$.
		7856	75 25	0.0	0^{+}			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
7858.9	(6)	1184.5 4	100	6674.4	5-	D		E_{α} Mult.; from (²⁸ Si. α 2p γ), Mult=D from γ (DCO).
7893.4	$(1^+, 2^+)$	7892.5	100	0.0	0^{+}	_		$=\gamma,\cdots=\gamma(\gamma)$
7899	$(3^{-} \text{ to } 7^{-})$	1225	100	6674.4	5-			
7911	$(3^{-},4^{+})$	2252	81.8	5658.61	5-			$E_{\alpha}L_{\alpha}$; from $(\alpha, p\gamma)$.
	(-))	2562	58.8	5349.4	4+			E_{α} , I_{α} ; from $(\alpha, p\gamma)$.
		3325	42.8	4585.87	5-			E_{γ} , I_{γ} : from $(\alpha, p\gamma)$.
		3431	100 12	4479.98	4-			E_{α} , I_{α} ; from $(\alpha, p\gamma)$.
		4101	85 12	3810.18	3-			E_{γ} , I_{γ} : from $(\alpha, p\gamma)$.
		5743	19 8	2167.472	2+			E_{γ} , I_{γ} : from $(\alpha, p\gamma)$.
7992	$(1^{-},2,3^{-})$	5824	100	2167.472	2+			E_{γ} : other: 5827 3 from (α, γ) :resonances.
8068	$(3^{-},4^{+})$	2026	100 20	6041.8	$(3^{-},4^{+})$			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		4258	67 15	3810.18	3-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8077.20	7+	789.3 6	7.5 15	7288.32	6+			$E_{\gamma}I_{\gamma}$: from (²⁸ Si. α 2p γ). Other: $I\gamma$ =7 in (α .p γ).
		1669.0 <i>3</i>	100 3	6408.32	6+	M1+E2	+0.72 + 21 - 16	B(M1)(W.u.)=0.026 + 16 - 10; B(E2)(W.u.)=17 + 15 - 8
								E_{α} : weighted average of 1669.4 4 from (²⁸ Si. α 2py), 1669.2 3
								from $\binom{16}{0}$ 2nv) and 1668 3 4 from $\binom{14}{10}$ n 2nv)
								$1 \text{ from } (28 \text{ Si } \alpha 2 \text{ m})$
								γ . from ($31, \alpha 2 p\gamma$). Mult: $D \downarrow O$ with $\Delta I = 1$ from $\alpha(DCO)$ in $({}^{28}Si \alpha 2p\alpha)$ and $\alpha(0)$ in
								Mult $D+Q$ with $\Delta J=1$ from $\gamma(DCO)$ in $(-51, \alpha 2p\gamma)$ and $\gamma(\theta)$ in (α, p_0) ; M2 miled out by PUI
								$(\alpha, \beta\gamma)$, W12 function by KOL. δ : from $\alpha(\theta)$ in (α, m)
8106	$(0^+ to 4^+)$	5038	100	2167 472	2^+			$0. \text{ from } \gamma(0) \text{ in } (\alpha, \beta \gamma).$
8124	$(0 \ 10 \ 4)$ $(3^{-} \ to \ 6^{+})$	1450	37.5	6674.4	∠ 5-			$F I : from (\alpha m)$
0124	(5 10 0)	2774	24.5	5340.4	J 4+			E_{γ}, i_{γ} . from (α, p_{γ}) . E. I.: from (α, p_{γ}) only
		2774	100.6	1585.87	+ 5-			E_{γ}, i_{γ} . Holli (α, p_{γ}) olliy. E. L.: from (α, p_{γ})
0125.0	(f^{-})	1055 1	64 14	7070.10	$(6)^{-}$	(M1 + E2)	+0.0 + 7.2	E_{γ}, i_{γ} . Hom (a, p_{γ}) .
8123.0	(0)	1033 1	04 14	/0/0.19	(0)	(M1+E2)	+0.9 + 7 - 2	$E_{\gamma,l\gamma}$. from ($S_{l,\alpha}^{2} p_{\gamma}^{\gamma}$) considered for a doublet, also reported in (α, p_{γ})
								$(\alpha, p\gamma)$. Mult δ : D $(\Omega$ from $\alpha(\beta)$ in $(\alpha, p\alpha)$ Other: Mult D from $\alpha(DC\Omega)$
								(a,b). Other. Wall-D from $y(DCO)$
		1451 1	20.7		<u>-</u>			In $(-51,\alpha 2p\gamma)$, giving possible $\Delta J=0$.
		1451 1	29 /	66/4.4	2			E_{γ},I_{γ} : from (²⁰ S1, α 2p γ), not reported in (α ,p γ); a similar γ is
		2520.2	100.14	4505.05	~_			placed from 8124 level in the latter.
		3538 2	100 14	4585.87	5-			E_{γ}, I_{γ} : from (²⁰ S1, $\alpha 2p\gamma$), not reported in ($\alpha, p\gamma$); a similar γ is
0101	(2 - 4 +)	(012	100	0167 470	2+			placed from 8124 level in the latter.
8181	(3,4')	0013	100	210/.4/2	2' 5-			
8215	(3 to /)	1541	35 /	00/4.4	5 5-			E_{γ} : from $(\alpha, p\gamma)$.
		2556	100 8	5658.61	2			E_{γ} : from $(\alpha, p\gamma)$.

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ#	Comments
8233	(1-)	8232	100	0.0	0^{+}			
8261	(3 ⁻ to 6 ⁻)	2602	89 6	5658.61	5-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		3675	100 6	4585.87	5-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		3781	33 4	4479.98	4-			E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
8311	(1^{+})	4501	100 25	3810.18	3-			
		6143	89 25	2167.472	2+			
8353	$(1,2^{+})$	3787	80 22	4565.5	2+			E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
		6185	100 4	2167.472	2+			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		8352	42 20	0.0	0^+			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8391	(2^{+})	8390	100	0.0	0^{+}			
8417	$(3^{-} \text{ to } 7^{-})$	2758	100	5658.61	5			
8481	(3 to 6)	3895	100 10	4585.87	5			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		4001	100 10	4479.98	4-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8491.1	(6 ⁻)	1420.9 3	100	7070.19	(6)-	D+Q		E_{γ} : weighted average of 1421.0 4 from (²⁶ Si, α 2p γ) and 1420.8 3 from (¹⁶ O,2p γ).
								Mult., δ : δ (Q/D)=+1.1 +5-4 from $\gamma(\theta)$ data in (α ,p γ) if 1420.9 γ is a Δ J=0
								transition. $\gamma(\theta)$ data giving positive A ₂ and negative A ₄ is consistent with
								$\Delta J=0$ or 2; γ (DCO) in (²⁸ Si, α 2p γ) is consistent $\Delta J=1$, but for large
								D+Q admixture, it can also be consistent with $\Delta J=0$.
8517	$(1,2^{+})$	6349	100 19	2167.472	2^{+}			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
		8516	11 9	0.0	0^{+}			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8520	$(3^{-} \text{ to } 6^{-})$	3934	61 6	4585.87	5-			E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
		4040	100 13	4479.98	4-			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
8569.59	8+	492.55 25	13.1 9	8077.20	7+	M1(+E2)	>-0.09	E_{γ} : weighted average of 492.6 2 from (²⁸ Si,α2pγ), 492.7 2 from (¹⁶ O,2pγ), and 492.25 25 from (¹⁴ N,n2pγ).
								I_{γ} : weighted average of 12.7 7 from (²⁸ Si, α 2p γ), 21 4 from (¹⁶ O,2p γ), 14
								4 from $({}^{14}N.n2p\gamma)$, and 18 4 from $(\alpha, p\gamma)$.
								Mult δ : from $\gamma(\theta, \text{pol})$ in (¹⁶ O.2p γ), also supported by $\gamma(\text{DCO})$ in
								$(^{28}\text{Si},\alpha 2\text{py}).$
		1061.4 2	23.7 13	7508.12	7-	(E1)		E_{γ} : weighted average of 1061.4 3 from (²⁸ Si, α 2p γ), 1061.5 2 from
								$({}^{16}\text{O},2p\gamma)$, and 1061.2 3 from $({}^{14}\text{N},n2p\gamma)$.
								I_{γ} : weighted average of 24.3 7 from (²⁸ Si,α2pγ), 21 6 from (¹⁶ O,2pγ), 14 4 from (¹⁴ N,n2pγ), and 18 3 from (α,pγ).
								Mult : D from γ (DCO) in (²⁸ Si α 2pv) for a doublet structure: polarity from
								level scheme.
		1282 <i>I</i>	1.0 3	7288.32	6+			E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$) only.
		2161.0 3	100 4	6408.32	6+	E2		E_{γ} : weighted average of 2162 <i>l</i> from (²⁸ Si, α 2py), 2160.6 2 from
								$(^{16}O, 2p\gamma)$, and 2161.30 20 from $(^{14}N, n2p\gamma)$.

36

 $^{38}_{18}\mathrm{Ar}_{20}$ -36
	Adopted Levels, Gammas (continued)													
						<u> </u>	³⁸ Ar) (cont	inued)						
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult. [#]	δ#	Comments						
								 E_γ: weighted average of 2162 <i>1</i> from (²⁸Si,α2pγ), 2160.6 2 from (¹⁶O,2pγ), and 2161.30 20 from (¹⁴N,n2pγ). I_γ: from (¹⁴N,n2pγ). Mult.: from γ(θ,pol) in (¹⁶O,2pγ), γ(DCO) in (²⁸Si,α2pγ) and γ(θ) in (¹⁴N, n2pγ). 						
8595	(3 ⁻ to 7 ⁻)	2936 4009	100 <i>20</i> 100 <i>20</i>	5658.61 4585 87	5^{-} 5 ⁻			(10,12py). E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{α},I_{α} : from $(\alpha,p\gamma)$						
8650	$(3^{-} to 6^{+})$	2597 2991	25 6 100 11	6053.2 5658.61	(4 ⁺) 5 ⁻			E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$.						
8668	2+	3791 6500	100 <i>30</i> 100 <i>30</i>	4877.0 2167.472	$3^{-}_{2^{+}}$			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$. E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.						
8783 8789	(3 ⁻ to 7 ⁻) (4 ⁻ to 7 ⁻)	3124 1719 2115	100 100 <i>15</i> 54 <i>15</i>	5658.61 7070.19 6674.4	5 ⁻ (6) ⁻ 5 ⁻			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$. E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.						
8800 8809 8828	$(2^{-} \text{ to } 6^{-})$ $(4^{+} \text{ to } 8^{+})$ $(3^{-} \text{ to } 7^{-})$	2758 2401 4242	100 100	6041.8 6408.32 4585.87	$(3^-, 4^+)$ 6^+ 5^-									
8875	(3 to 7) $(3^{-} \text{ to } 6^{-})$	3216 4289 4395	50 10 50 10 100 20	4585.87 4585.87 4479.98	5- 5- 4-			E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$.						
8944	(4 ⁺ to 7 ⁻)	2536 3285	35 7 100 9	6408.32 5658.61	6^+ 5 ⁻			E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{α},I_{γ} : from $(\alpha,p\gamma)$.						
8956	(4 ⁻ to 7 ⁻)	1886 4370	72 <i>10</i> 100 <i>10</i>	7070.19 4585.87	$(6)^{-}$ 5 ⁻			E_{γ},I_{γ} : from $(\alpha,p\gamma)$. E_{γ},I_{γ} : from $(\alpha,p\gamma)$.						
8972.85	7-	847.8 <i>4</i> 1903 <i>1</i>	3.3 8 3.3 8	8125.0 7070.19	(6^{-}) $(6)^{-}$			E_{γ} , I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$) only. E_{γ} , I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$) only.						
		2300 1	9.2 17	6674.4	5-	(E2)		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ) only. Mult.: Q from γ (DCO) in (²⁸ Si, α 2p γ) for a doublet structure; polarity from level scheme.						
		2564.4 4	100 8	6408.32	6+	E1+M2	-0.04 2	E _γ : weighted average of 2565 <i>1</i> from (²⁸ Si,α2pγ), 2564.5 <i>4</i> from (¹⁶ O,2pγ), and 2564.0 <i>5</i> from (¹⁴ N,n2pγ). I _γ : from (¹⁶ O,2pγ) and (²⁸ Si,α2pγ). Mult.,δ: from $\gamma(\theta$,pol) in (¹⁶ O,2pγ), also supported by γ (DCO) in (²⁸ Si,α2pγ) and $\gamma(\theta)$ in (¹⁴ N,n2pγ).						
		3313.4 7	20.3 13	5658.61	5-	(E2)		E _y : weighted average of 3314 <i>I</i> from (²⁸ Si, α 2py) and 3313.1 7 from (¹⁴ N,n2py). I _y : weighted average of 20.8 8 from (²⁸ Si, α 2py), 13 3 from (¹⁶ O,2py), 29 9 from (¹⁴ N,n2py), and 15 6 from (α ,py). Mult : O from α (DCO) in (²⁸ Si α 2py): polarity from level scheme						
		4386.2 4	36 <i>3</i>	4585.87	5-	E2		E_{γ} : weighted average of 4388 2 from (²⁸ Si, α 2p γ), 4386.2 4 from						

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -37

E_{γ}^{\dagger}	Įγ [‡]	Ef	T.77	$\frac{\gamma}{\gamma}$	(³⁸ Ar) (continued)
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	τπ		
		J	J_f^n	Mult. [#]	Comments
					 (¹⁶O,2pγ), and 4386.1 5 from (¹⁴N,n2pγ). I_γ: weighted average of 34.2 17 from (²⁸Si,α2pγ), 51 8 from (¹⁶O,2pγ), and 47 6 from (α,pγ). Other: 93 18 from (¹⁴N,n2pγ). Mult.: from γ(θ,pol) in (¹⁶O,2pγ) and γ(DCO) in (²⁸Si,α2pγ).
2590		6408.32	6+		
1722	65 12	7350	$(3^{-},4^{+})$		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
2002	100 14	7070.19	$(6)^{-}$		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
2398	67 12	6674.4	5-		E_{γ}, I_{γ} : from ($\alpha, p\gamma$).
4200	100	4877.0	3-		
3428	100 15	5658.61	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
4501	37 5	4585.87	5-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
9099	100	0.0	0^+		
6990	100	2167.472	21		
4584	100 12	4585.87	5 4-		E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
4090	100 12	4479.98	(6^{-})		E_{γ},I_{γ} : from $(\alpha,p\gamma)$.
1074 7026	100	8125.0	(0)		
7030	100	2107.472	$\frac{2}{2^+}$		
7092 4707	100	2107.472 4585.87	2 5-		
7132	100	2167 472	2+		
2922	100	6408 32	$\frac{2}{6^{+}}$		
1848 1	16.5 25	7491.3	(6^+)	[E2]	B(E2)(W.u.) = 5.6 + 33 - 20
10.01	1010 20	1 19 110	(0)	[22]	$E_{\rm r}$ L: from (²⁸ Si α 2py)
2051.3.6	100.8	7288.32	6+	E2	$B(F_2)(W_{II})=20+8-5$
200110 0	100 0	1200102	Ũ		$E_{\rm r}$ L _v : from $({}^{28}\text{Si} \alpha 2\text{pv})$
					Mult: O from $\gamma(DCO)$ in $({}^{28}Si \alpha 2n\gamma)$ M2 ruled out by RUI
2931 1	24 1 25	6408 32	6+	[E2]	$B(E_2)(W_{\rm H}) = 0.8 + 5 - 3$
2751 1	2111 20	0100.52	0	[122]	$F_{\rm eff}$ L.: from $({}^{28}\text{Si}\alpha 2\text{mv})$
2941-2	80.20	6408 32	6+		$F_{\rm ev}$ L: from (²⁸ Si α 2py)
3601 2	60 20	5658 61	5-		E_{γ} , E
A76A 3	100 20	1585 87	5-		$E_{\gamma,r\gamma}$. from ($5,\alpha 2p\gamma$). Other: $1\gamma = 222.50$ in ($\alpha, p\gamma$).
4788	100 20	4585 87	5-		$L_{\gamma,1\gamma}$. nom ($S_{\gamma,\alpha}L_{\gamma,\gamma}$). Outer. $1\gamma - 100 25$ m ($\alpha,\gamma\gamma$).
3778	100	5658 61	5-		
4874	100	4585.87	5-		
967 4 3	79 7	8569.59	8+	D	E. L.: from $\binom{28}{2}$ Si α^2 pv). Other: $I_{\nu}=118$ 20 in $(\alpha \text{ pv})$
201.7.3				D	Mult: $\Delta J=0$ from γ (DCO) in (²⁸ Si, α 2p γ).
2046 1	57 14	7491.3	(6 ⁺)		E_{γ}, I_{γ} : from (²⁰ Si, $\alpha 2p\gamma$).
2248 1	57 22	7288.32	6+		E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$).
3128 2	100 14	6408.32	6+		E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$). Other: $I\gamma = 100\ 26$ in ($\alpha, p\gamma$).
9596	100	0.0	0^{+}	E1	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances, electric polarity from E1 excitation in (e, e') .
	2590 1722 2002 2398 4200 3428 4501 9099 9990 4584 4690 1074 7036 7092 4707 7132 2922 1848 <i>I</i> 2051.3 <i>6</i> 2931 <i>I</i> 2941 <i>2</i> 3691 <i>2</i> 4764 <i>3</i> 4778 3778 4874 967.4 <i>3</i> 2046 <i>I</i> 2248 <i>I</i> 3128 <i>2</i> 9596	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2590 6408.32 1722 65 12 7350 2002 100 14 7070.19 2398 67 12 6674.4 4200 100 4877.0 3428 100 15 5658.61 4501 37 5 4585.87 9090 100 2167.472 4584 100 12 4479.98 1074 100 8125.0 7036 100 2167.472 7092 100 2167.472 7092 100 2167.472 7092 100 2167.472 7092 100 2167.472 2922 100 6408.32 1848 1 16.5 25 7491.3 2051.3 6 20 6408.32 6408.32 2931 2 452 2931 1 24.1 25 6408.32 3691 2 60 20 5658.61 4764 3 100 20 4585.87 3778 100 5658.61 4874 100 4585.87 967.4 3 79 7 8569.59 2046 57 14 7491.3 2248 1 57 22 7288.32 3128 100 100 14 6408.32 9596 100 0.0 </td <td>$2590$$6408.32$$6^+$$1722$$65$$12$$7350$$(3^-,4^+)$$2002$$100$$14$$7070.19$$(6)^ 2398$$67$$12$$6674.4$$5^ 4200$$100$$4877.0$$3^ 3428$$100$$15$$5658.61$$5^ 4501$$37$$5$$4585.87$$5^ 9099$$100$$0.0$$0^+$$999$$100$$2167.472$$2^+$$4584$$100$$12$$4479.98$$4^ 1074$$100$$8125.0$$(6^-)$$7036$$100$$2167.472$$2^+$$7092$$100$$2167.472$$2^+$$7092$$100$$2167.472$$2^+$$7092$$100$$2167.472$$2^+$$2922$$100$$4488.32$$6^+$$1848$$1$$16.5$$25$$7491.3$$2051.3$$6$$100$$8$$7288.32$$6^+$$2931$$1$$24.1$$25$$6408.32$$6^+$$2931$$1$$24.1$$25$$6408.32$$6^+$$2931$$1$$24.1$$25$$6408.32$$6^+$$2931$$1$$24.1$$25$$6408.32$$6^+$$2941$$2$$80$$20$$5658.61$$5^ 4764$$3$$100$$20$$4585.87$$5^ 3778$$100$$4585.87$$5^ 967.4$$3$<</td> <td>$2590$ 6408.32 6^+ 1722 65 12 7350 $(3^-, 4^+)$ 2002 100 14 7070.19 $(6)^ 2398$ 67 12 6674.4 $5^ 4200$ 100 4877.0 $3^ 3428$ 100 15 5658.61 $5^ 4501$ 37 5 4585.87 $5^ 909$ 100 0.0 0^+ 990 900 100 2167.472 2^+ 4584 100 12 4479.98 $4^ 1074$ 100 8125.0 (6^-) 7036 7036 100 2167.472 2^+ 7092 100 2167.472 2^+ 7032 100 2167.472 2^+ 7092 100 2167.472 2^+ 7132 100 2467.43 6^+ [E2] 2051.3 6 100.8 7288.32 6^+ [E2] 2931</td>	2590 6408.32 6^+ 1722 65 12 7350 $(3^-,4^+)$ 2002 100 14 7070.19 $(6)^ 2398$ 67 12 6674.4 $5^ 4200$ 100 4877.0 $3^ 3428$ 100 15 5658.61 $5^ 4501$ 37 5 4585.87 $5^ 9099$ 100 0.0 0^+ 999 100 2167.472 2^+ 4584 100 12 4479.98 $4^ 1074$ 100 8125.0 (6^-) 7036 100 2167.472 2^+ 7092 100 2167.472 2^+ 7092 100 2167.472 2^+ 7092 100 2167.472 2^+ 2922 100 4488.32 6^+ 1848 1 16.5 25 7491.3 2051.3 6 100 8 7288.32 6^+ 2931 1 24.1 25 6408.32 6^+ 2931 1 24.1 25 6408.32 6^+ 2931 1 24.1 25 6408.32 6^+ 2931 1 24.1 25 6408.32 6^+ 2941 2 80 20 5658.61 $5^ 4764$ 3 100 20 4585.87 $5^ 3778$ 100 4585.87 $5^ 967.4$ 3 <	2590 6408.32 6^+ 1722 65 12 7350 $(3^-, 4^+)$ 2002 100 14 7070.19 $(6)^ 2398$ 67 12 6674.4 $5^ 4200$ 100 4877.0 $3^ 3428$ 100 15 5658.61 $5^ 4501$ 37 5 4585.87 $5^ 909$ 100 0.0 0^+ 990 900 100 2167.472 2^+ 4584 100 12 4479.98 $4^ 1074$ 100 8125.0 (6^-) 7036 7036 100 2167.472 2^+ 7092 100 2167.472 2^+ 7032 100 2167.472 2^+ 7092 100 2167.472 2^+ 7132 100 2467.43 6^+ [E2] 2051.3 6 100.8 7288.32 6^+ [E2] 2931

 $^{38}_{18}\mathrm{Ar}_{20}$ -38

 $^{38}_{18}\mathrm{Ar}_{20}$ -38

From ENSDF

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments
9644	$(5^{-} \text{ to } 9^{-})$	2136	100	7508.12	7-			
9647	$(2^{-} \text{ to } 6^{-})$	3045	100	6601.59	4-			
9655	(3 ⁻ to 7 ⁻)	3996	100	5658.61	5-			
9669	(3 ⁻ to 7 ⁻)	4010	100	5658.61	5-			
9689	1-	Х						I_{γ} : 20% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 55.
		5752	26 5	3936.5	2^{+}	(E1(+M2))	+0.07 + 9 - 12	E_{γ}, I_{γ} : from (α, γ) :resonances.
								Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances, polarity from level-
								parity change determined based on the fact that only natural-parity
		(212	(2.11	2276.0	0+			resonant states can be populated.
		6312	63 11	3376.9	0^{+}			E_{γ}, I_{γ} : from (α, γ) :resonances.
		/521	18.5	2167.472	2	(E1)		E_{γ}, I_{γ} : from (α, γ) :resonances.
		9688	100 13	0.0	01	(EI)		E_{γ}, I_{γ} : from (α, γ) : resonances.
								Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances, electric polarity determined
								pasulated
0707	3-	v						populated. I : 35% α absolute branching is unobserved in $(\alpha \alpha)$ resonances
2121	5	л						A_{γ} , 55.76 y absolute branching is unobserved in (a, y) , resonances.
		5231	26.8	4565 5	2^{+}			F_{α} L: from $(\alpha \gamma)$:resonances
		5860	100 10	3936.5	$\frac{1}{2}$ +	(E1)		E_{α} L _z : from (α, γ) :resonances.
		0000	100 10	0,000	-	(21)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
		5986	18 8	3810.18	3-			$E_{\alpha}I_{\alpha}$: from (α, γ) :resonances.
		7629	23 8	2167.472	2+			$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
9811	1-	6434	9.1 <i>13</i>	3376.9	0^{+}			$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
		7643	4.6 23	2167.472	2^{+}			$E_{\gamma}I_{\gamma}$: from (α,γ) :resonances.
		9810	100 10	0.0	0^{+}	(E1)		E_{γ} , I_{γ} : from (α, γ) : resonances.
								Mult.: from $\gamma(\theta)$ in (α, γ) :resonances.
9829	(4 ⁻ to 8 ⁻)	2759	100	7070.19	(6)-			
9894	2+	Х						I_{γ} : 12% γ absolute branching is unobserved in (α, γ) :resonances.
								Additional information 57.
		4160	40 8	5733.9	1-			E_{γ}, I_{γ} : from (α, γ) :resonances.
		4342	20 4	5552.21	1+,2+		0.40.10	E_{γ}, I_{γ} : from (α, γ) :resonances.
		5328	48 8	4565.5	2*	(M1+E2)	+0.18 13	E_{γ}, I_{γ} : from (α, γ) :resonances.
		5057	29.4	2026 5	2+		.0.04 . 27 . 21	Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		5957	28 4	3930.5	2.	(M1+E2)	+0.84 + 27 - 21	E_{γ}, I_{γ} : from (α, γ) : resonances.
		6092	72 8	2010 10	2-	$(\mathbf{E1} + \mathbf{M2})$	0.11.7	Mult., ρ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.
		0085	12.0	3810.18	5	$(L1\pm W12)$	-0.11 /	$L_{\gamma,1\gamma}$. Holli (α, γ) . Itsolialites. Mult δ : D + O from $\alpha(\theta)$ in (α, α) : reconneces
		7726	100.8	2167 472	2+	(M1 + F2)	-0.27.6	F. L : from $(\alpha \gamma)$: resonances
		1120	100 0	2101.712	-	(1111 1 122)	0.27 0	Mult δ : D+O from $\gamma(\theta)$ in (α, γ) :resonances
		9893	44 8	0.0	0^{+}	(E2)		$E_{\alpha}I_{\alpha}$: from (α, γ) :resonances.
					-	、 <i>)</i>		Mult.: Q from $\gamma(\theta)$ in (α, γ) :resonances.

Adopted Levels, Gammas (continued) $\gamma(^{38}\text{Ar})$ (continued) E_{γ}^{\dagger} I_{γ}^{\ddagger} $\delta^{\#}$ Mult.[#] \mathbf{J}_i^{π} J^{π} E_i (level) \mathbf{E}_{f} Comments 9917 5351 4565.5 2^{+} 2^{+} 5980 3936.5 6106 3810.18 3-7749 2167.472 2+ 9916 100 0.0 0^{+} Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances. (E1) E_{γ} : from (²⁸Si, α 2p γ). (9^+) 100 8569.59 8^{+} D+O 9934.0 1364 *1* Mult.: $\Delta J=1$ from γ (DCO) in (²⁸Si, $\alpha 2p\gamma$) for a doublet structure. 2^{+} I_{γ} : 14% γ absolute branching is unobserved in (α, γ) :resonances. 9951 х Additional information 58. 3936.5 6014 57.8 2^{+} (M1+E2) E_{γ}, I_{γ} : from (α, γ) :resonances. +1.4 + 4 - 3Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances. E_{γ}, I_{γ} : from (α, γ) :resonances. 6140 708 3810.18 3-(E1(+M2))+0.07 + 9 - 12Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances. 7783 100 8 2167.472 2+ (M1+E2) +1.19 +30-8 E_{γ}, I_{γ} : from (α, γ) :resonances. Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances. 1^{-} 0^{+} 9996 9995 100 0.0 (E1) Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances. E_{γ}, I_{γ} : from (²⁸Si, $\alpha 2p\gamma$). 10024.9 (8^{-}) 1900 1 100 13 8125.0 (6^{-}) 0 E_{γ}, I_{γ} : from (²⁸Si, $\alpha 2p\gamma$). 1948 1 38.8 8077.20 7+ E_{γ}, I_{γ} : from (²⁸Si, $\alpha 2p\gamma$). 2517 1 46 8 7508.12 7-2956 2 548 7070.19 $(6)^{-}$ E_{γ}, I_{γ} : from (²⁸Si, $\alpha 2p\gamma$). 10034 1^{-} 10033 100 0.0 0^{+} (E1) Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances. I_{γ}: 47% γ absolute branching is unobserved in (α , γ):resonances. 10047 (1^{-}) х Additional information 59. 2^{+} 5481 100 4565.5 E_{γ}, I_{γ} : from (α, γ) :resonances. 54 3936.5 2^{+} E_{γ}, I_{γ} : from (α, γ) :resonances. 6110 7879 36 2167.472 2+ E_{γ} , I_{γ} : from (α, γ) : resonances. 10067 3- I_{γ} : 45% γ absolute branching is unobserved in (α, γ) :resonances. х Additional information 60. 3853 42 5 6213.8 (2^{+}) D(+O)+0.058 E_{γ} , I_{γ} : from (α, γ) : resonances. Mult.: from $\gamma(\theta)$ in (α, γ) :resonances. 4983[@] <16 5083.6 $(2)^{-}$ E_{γ}, I_{γ} : from (α, γ) :resonances. 5501 74 5 4565.5 2^{+} (E1+M2) -0.09~4 E_{γ}, I_{γ} : from (α, γ) :resonances. Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances. 5587 42 5 4479.98 4-(M1+E2) E_{γ}, I_{γ} : from (α, γ) :resonances. Mult... δ : D+O from $\gamma(\theta)$ in (α, γ) :resonances, $\delta = -0.27 + 10 - 20$ or -2.9+9-8. 2^{+} 6130 16 5 3936.5 (E1+M2) E_{γ}, I_{γ} : from (α, γ) :resonances. Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances, $\delta = -0.02$ 4 or -2.9 +5-11. 7899 100 10 2167.472 2+ E_{γ}, I_{γ} : from (α, γ) :resonances. 10101 4442 5658.61 5- E_{γ}, I_{γ} : from $(\alpha, p\gamma)$. $(3^{-} \text{ to } 7^{-})$ 100 12 5515 69 12 4585.87 5- E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.

40

$^{38}_{18}\mathrm{Ar}_{20}$ -40

From ENSDF

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Ι _γ ‡	E _f	\mathbf{J}_{f}^{π}	Mult. [#]	δ#	Comments
10112 10120	$(4^+ \text{ to } 8^+)$ (6.7.8)	3703 2043	100 100 5	6408.32 8077.20	6+ 7+			$\mathbf{F} \mathbf{I} \cdot \mathbf{from} (\alpha \mathbf{p} \boldsymbol{v})$
10120	(0,7,0)	2612	28 5	7508.12	, 7 [–]			E_{γ}, I_{γ} : from $(\alpha, p\gamma)$.
10135	$(5^{-} \text{ to } 9^{-})$	2627	100	7508.12	7-			L : 270% as absolute branching is unobserved in (a a) traceneness
10140	2	А						Additional information 61.
		7978	100 6	2167.472	2+	(M1(+E2))	-0.05 4	E_{γ}, I_{γ} : from (α, γ) :resonances.
		10145	73	0.0	0^{+}	(E2)		Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances. E _w L _w : from (α, γ) :resonances.
		10110	, 0	010	0	(11)		Mult.: Q from $\gamma(\theta)$ in (α, γ) :resonances.
10170	3-	х						I_{γ} : 27% γ absolute branching is unobserved in (α, γ) :resonances.
		5604	19 <i>3</i>	4565.5	2+	(E1(+M2))	-0.04 +8-5	E _{γ} .I _{γ} : from (α , γ):resonances.
								Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.
		5690	49 5	4479.98	4-	(M1+E2)		E_{γ}, I_{γ} : from (α, γ) :resonances.
								Mult., o: $D(+Q)$ from $\gamma(\theta)$ in (α, γ) :resonances, $\delta = -0.14$ 5 or -4.5 + $6-8$.
		6233	30 5	3936.5	2+	(E1)		E_{γ}, I_{γ} : from (α, γ) :resonances.
		8002	100.8	2167 472	2+	$(E1(\pm M2))$	+0.05.4	Mult., δ : D from $\gamma(\theta)$ in (α, γ) :resonances.
		0002	100 0	2107.472	2	(L1(1112))	10.05 4	Mult., δ : D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances.
10174.29	9-	835.3 4	3.7 11	9339.2	8+	[E1]		$B(E1)(W.u.) = 7 \times 10^{-6} + 5 - 3$
		1201 22 20	00 (0070.05	7-	50		E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$) only.
		1201.32 20	88 0	8972.85	/	E2		B(E2)(W.u.)=4.9 + 13 - 10 E : weighted average of 1201 & 3 from (²⁸ Si α 2m) 1201 17 21
								from ($^{16}O.2p\gamma$), and 1201.24 20 from ($^{14}N.n2p\gamma$).
								I _{γ} : weighted average of 74 5 from (²⁸ Si, α 2p γ), 93 4 from
								$({}^{16}\text{O},2p\gamma)$, 92 8 from $({}^{14}\text{N},n2p\gamma)$, and 100 <i>10</i> from $(\alpha,p\gamma)$.
		1604 67 16	100 (05(0.50	0+	E1. 1/2	0.04.2	Mult.: from $\gamma(\theta, \text{pol})$ in (¹⁰ O,2p γ) and $\gamma(\text{DCO})$ in (²⁸ Si, α 2p γ).
		1604.67 16	100 4	8569.59	8'	EI+M2	-0.04 2	$B(E1)(W.u.)=2./\times10^{-5}+8-0; B(M2)(W.u.)=0.08+15-0$
								L_{γ} . weighted average of 1003.4 4 from ($^{16}N.n2p\gamma$), 1004.08 11 from ($^{16}O.2p\gamma$), and 1604.32 25 from ($^{14}N.n2p\gamma$).
								I_{γ} : from (¹⁶ O,2p γ).
								Mult., δ : from $\gamma(\theta, \text{pol})$ in (¹⁶ O,2p γ), $\Delta J=1$ from $\gamma(DCO)$ in
10101		2672	100	7500 10	-			$(^{28}\mathrm{Si},\alpha 2\mathrm{p\gamma}).$
10181	(5 to 9) 1 ⁻	2073 8016	100	7508.12 2167 472	/ 2+			F_{α} : 8027.8 from $(\alpha \gamma)$:resonances
10101	1	10183	100	0.0	$\bar{0}^{+}$	(E1)		$B(E1)(W.u.)=3.0\times10^{-5}+33-10$
						. /		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10217	$(0^+ \text{ to } 4^+)$	Х						I_{γ} : 35% γ absolute branching is unobserved in (α, γ) :resonances. Additional information 63.

41

 $^{38}_{18}\mathrm{Ar}_{20}\text{-}41$

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
10217	$(0^+ \text{ to } 4^+)$	5651	100	4565.5	2+		I_{γ} : from (α, γ) :resonances.
		8049	89	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10245	(5 ⁻ to 8 ⁻)	1754	100 8	8491.1	(6 ⁻)		I_{γ} : from $(\alpha, p\gamma)$.
		2737	59 8	7508.12	7-		I_{γ} : from $(\alpha, p\gamma)$.
10245	$(0^+ \text{ to } 4^+)$	6308		3936.5	2+		
		8077		2167.472	2+		
10255	1-	Х					I_{γ} : 10% γ absolute branching is unobserved in (α, γ) :resonances.
		(077	2 2 3	2276.0	0+		Additional information 64.
		68//	23 3	33/6.9	0^+		I_{γ} : from (α, γ) :resonances.
		8087	13.0 13	2107.472	2 · 0+	(E1)	I_{γ} : from (α, γ) :resonances.
		10234	100 0	0.0	0	(E1)	α_{γ} . Holli (α, γ) . It solitations. Mult : D from $\alpha(\theta)$ in (α, γ) : resonances
10274	$(4^+ \text{ to } 8^+)$	2986	100	7288 32	6+		where D from $\gamma(0)$ in (a, γ) . resonances.
10316	$(3^{-} \text{ to } 7^{-})$	5730	100	4585.87	5-		
10335	1-	X	100	1000107	U		I_{γ} : 23% γ absolute branching is unobserved.
							Additional information 65.
		6398	13	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6957	13	3376.9	0^{+}		I_{γ} : from (α, γ) :resonances.
		10333	100	0.0	0^{+}	(E1)	I_{γ} : from (α, γ) :resonances.
							Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10382	$(1^{-} \text{ to } 4^{+})$	6571	25	3810.18	3-		I_{γ} : from (α, γ) :resonances.
10200	1-	8214	100	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10398	1-	2405 I	6.4	7992	$(1^-, 2, 3^-)$		E_{γ} : from (α, γ) :resonances.
		5918	64	44/9.98	4		E_{γ} : γ to 4 is suspect from RUL (evaluator).
		0430 0	10.2	3930.3	2 0+	[17:11	$D(E1)/(W_{12}) = 1.1 \times 10^{-5} + 210^{-8}$
		/01/ 0	10.5	5570.9	0.		$D(E1)(W.U.)=1.1\times10^{-5}+210-6$
		0722 0	10.2	2167 472	2+	FE 11	$E_{\gamma,1\gamma}$. Holl (α,γ) . resolutions. $P(E_1)(W_{11}) = 7\times 10^{-6} + 120^{-5}$
		0233 0	10.5	2107.472	2	[E1]	$D(E1)(W.u.) = 7 \times 10^{-5} + 150 - 5$ E. L.: from (a a): resonances
		10400.8	100.20	0.0	0^{+}	(E1)	$E_{\gamma,1\gamma}$. from (α, γ) :resonances. F. I.: from (α, γ) :resonances
		10100 0	100 20	0.0	0	(21)	Mult: D from $\gamma(\theta)$ in (α, γ) :resonances.
10/31	1-	2803@		76282	$(1 2^+)$		
10451	1	2003 5273	116	5157.3	(1,2) 2 ⁺	(F1)	$B(E1)(W_{H}) = 1.6 \times 10^{-6} \pm 43 - 12$
		5215	1.1 0	5157.5	2	[L1]	L : from (α, γ) resonances
		5865	2211	1565 5	2+	FF11	$B(E1)(W_{H}) = 2.3 \times 10^{-6} \pm 58 \pm 17$
		5005	2.2 11	4505.5	2		L.: from $(\alpha \gamma)$ resonances
		8263	53	2167 472	2+	[F1]	$B(F1)(W_{H}) = 1.9 \times 10^{-6} + 49 - 15$
		0205	55	2107.172	-	[[]]]	I_{γ} : from (α, γ) :resonances.
		10429	100.20	0.0	0^{+}	(E1)	$B(E1)(Wu) = 1.9 \times 10^{-5} + 18 - 7$
		10127	100 20	0.0	J	(21)	I_{γ} : from (α, γ) :resonances.
							Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.

42

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -42

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ} ‡	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
10443	$(4^+ \text{ to } 8^+)$	3155	100	7288.32	6+		
10455	$(5^{-} \text{ to } 8^{+})$	1964	100 12	8491.1	(6 ⁻)		I_{γ} : from $(\alpha, p\gamma)$.
		2947	100 17	7508.12	7-		I_{γ} : from $(\alpha, p\gamma)$.
		4046	76 14	6408.32	6+		I_{γ} : from $(\alpha, p\gamma)$.
10494	1-	6557	25 6	3936.5	2^{+}		I_{γ} : from (α, γ) :resonances.
		8326	54 11	2167.472	2^{+}		I_{γ} : from (α, γ) :resonances.
		10492	100 20	0.0	0^{+}		I_{γ} : from (α, γ) :resonances.
10507	$(1,2^{+})$	8339	100 20	2167.472	2+		I_{γ} : from (α, γ) :resonances.
		10505	45 9	0.0	0^{+}		I_{γ} : from (α, γ) :resonances.
10516	(0^{+})	5950	17 4	4565.5	2+		I_{γ} : from (α, γ) :resonances.
		6579	13 4	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6705	100 21	3810.18	3-		I_{γ} : from (α, γ) :resonances.
105.15	(0+)	8348	59 11	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10547	(0^{+})	6610	100 21	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6/36	86 19	3810.18	3 2+		I_{γ} : from (α, γ) :resonances.
10557	(5-4-0-)	8379	18 4	2167.472	2		I_{γ} : from (α, γ) :resonances.
10557	(5 10 9)	3049	100	7508.12	/ 2+	(12.1.)	$P(T_1)(T_1) = 2 (-10^{-6} + 10^{-6}) = 20$
10587	1	4992	1.1 0	5594.6	21	[EI]	$B(E1)(W.u.)=2.6\times10^{\circ}+105-20^{\circ}$
		5502		5092 ($(2)^{-}$		I_{γ} : from (α, γ) :resonances.
		3303		5085.0	(2)		E_{γ} : 5500 5 III (α,γ):resonances.
		5877 S	<1	4709.3	0^+		I_{γ} : from (α, γ) :resonances.
		6650	2.2 12	3936.5	2+	[E1]	$B(E1)(W.u.)=2.2\times10^{-6}+87-17$
							E_{γ} : 6664 8 in (α, γ) :resonances.
		(77.)		2010 10	2-	(17.0)	I_{γ} : from (α, γ) :resonances.
		6776		3810.18	3	[E2]	E_{γ} : 6/83 8 in (α, γ) :resonances.
		0.410	10.0.00	01/7 /70	2+	05.13	I_{γ} : from (α, γ) :resonances.
		8419	10.2 23	2167.472	2^{+}	[E1]	$B(E1)(W.u.)=5\times10^{-6}+14-3$
							E_{γ} : 8415 10 in (α, γ) :resonances.
		10505	100.01	0.0	0+		I_{γ} : from (α, γ) :resonances.
		10585	100 21	0.0	01	(EI)	$B(E1)(W.u.)=2.5\times10^{-5}+42-11$
							I_{γ} : from (α, γ) :resonances. Mult : D from $\gamma(\theta)$ in (α, γ) :resonances
10589	$(4^{+} \text{ to } 7^{-})$	2464	26.6	8125.0	(6^{-})		L. from (α, \mathbf{p})
10507	(1 10 7)	4180	100 14	6408.32	6 ⁺		L.: from $(\alpha, p\gamma)$.
		6003	74 14	4585.87	5-		L_{α} : from $(\alpha, p\gamma)$.
10611	$(1^{-} \text{ to } 4^{+})$	5097	74	5513.3	3-		I_{γ} : from (α, γ) :resonances.
		5453	4 3	5157.3	2^{+}		I_{γ} : from (α, γ) :resonances.
		6674	23 5	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		8443	100 20	2167.472	2^{+}		I_{γ} : from (α, γ) :resonances.
10631.3	(2 ⁻)	4773.5		5857.5	$(2)^{-}$		
		5547.3		5083.6	$(2)^{-}$		

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	Comments
10634	$(6^+ \text{ to } 10^+)$	2064		8569.59	8+		
10666	$(1^{-},2^{+},3^{-},4^{+})$	6100	16 4	4565.5	2^{+}		I_{γ} : from (α, γ) :resonances.
		6729	35 8	3936.5	2+		I_{γ} : from (α, γ) :resonances.
		6855	45 10	3810.18	3-		I_{γ} : from (α, γ) :resonances.
		8498	100 20	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10676	$(4^+ \text{ to } 8^+)$	4267	100	6408.32	6+		
10684	1-	4950	10	5733.9	1-		I_{γ} : from (α, γ) :resonances.
		10682	100	0.0	0^+	(E1)	I_{γ} : from (α, γ) :resonances. Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
10726	$(1^{-} \text{ to } 4^{+})$	5173	19 4	5552.21	$1^+.2^+$		I_{γ} : from (α, γ) : resonances.
		5212	19 4	5513.3	3-		I_{γ} : from (α, γ) :resonances.
		6915	51 11	3810.18	3-		I_{γ} : from (α, γ) :resonances.
		8557	100 21	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10768	2+	5610	13	5157.3	2^{+}		I_{γ} : from (α, γ) :resonances.
		5684	19 4	5083.6	$(2)^{-}$		I_{γ} : from (α, γ) :resonances.
		5891	84	4877.0	3-		I_{γ} : from (α, γ) :resonances.
		8599	100 21	2167.472	2+		I_{γ} : from (α, γ) :resonances.
10002	a +	10766	49 10	0.0	0^+		I_{γ} : from (α, γ) :resonances.
10803	21	5645	377	5157.3	2+		I_{γ} : from (α, γ) :resonances.
		6237	93 20 57 12	4303.3	2-		I_{γ} : from (α, γ) :resonances.
		0992 8634	100 20	2167 472	3 2+		I_{γ} . Holli (α, γ) . resonances.
		10801	47 10	0.0	0^{+}	(F2)	I_{γ} . Hom (α, γ) . resonances
		10001	+/ 10	0.0	0	(L2)	Mult.: O from $\gamma(\theta)$ in (α, γ) :resonances.
10815.6	(0 to 3 ⁻)	х					I _{γ} : 27% γ absolute branching is unobserved in (p, γ):resonances.
							Additional information 66.
		4042.7	9	6772.7	1-		
		4241.0	34	6574.3	1-		
		4461.8	100	6353.5	1-		
		5081.3	23	5733.9	1		
		6249.5 [@]	<1.6	4565.5	2^{+}		
		6878.4 [@]	<1.6	3936.5	2+		
		7004.7 [@]	<2.3	3810.18	3-		
		7437.9 [@]	<2.3	3376.9	0^{+}		
		8647.1 [@]	<5	2167.472	2^{+}		
		10813.9 [@]	<2	0.0	0^{+}		
10827.0	(2)	Х					I_{γ} : 40% γ absolute branching is unobserved in (p, γ):resonances.
		3591	28	7236	(2^{+})		
		4252.4	17	6574.3	1-		

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Comments
10827.0	(2)	4341.3	19	6485.4	$(1^{-},2,3^{-})$	
		4576.8	47	6249.9	2+	
		4612.9	100	6213.8	(2^{+})	
		5232.0	27	5594.6	2+	
		5313.3	15	5513.3	3-	
		5669.2	37	5157.3	2+	
		5949.5	41	48/7.0	3	
		6260.9 C	<4	4565.5	2+	
		6346.5	13	44/9.98	4 2 ⁺	
		0889.8	23 17	3930.3 3810.18	2-	
		7010.1	17	2276.0	3 0 ⁺	
		7449.3	<5	33/0.9	0^{+}	
		10825.3	9 67	0.0	$\frac{2}{0^{+}}$	
10850.1	$(2^{-}, 3^{-})$	X	0.7	0.0	0	I_{γ} : 15% γ absolute branching is unobserved in (p,γ) :resonances.
		2956.6	7.0	7893 4	$(1^+ 2^+)$	
		3167	2.6	7683	$(3^{-},4^{+})$	
		3398	10.4	7452	$(1^{-} \text{ to } 4^{+})$	
		3902.0	4.1	6947.9	(2+)	
		3946.1	28	6903.8	2-,3-	
		4025.9	8.9	6824.0	$(2^+, 3^-)$	
		4168.3	3.3	6681.6	(0,1,2)	
		4275.5	26	6574.3	1-	
		4354.0	3.3	6495.8	$(2^{-},3^{-})$	
		4364.4	8.9	6485.4	(1, 2, 3)	
		4511.2	18.9	6338.0 6240.0	1, 2, 3	
		4599.9	4.1	6209.4	$\frac{2}{4^{-}}$	
		4808.0	3.3	6041.8	$(3^{-},4^{+})$	
		4992.2	15.9	5857.5	$(2)^{-}$	
		5024.8	4.1	5824.9	3-	
		5115.8	10.7	5733.9	1-	
		5336.4	7.8	5513.3	3-	
		5692.3	3.3	5157.3	2+	
		5766.0	6.7	5083.6	$(2)^{-}$	
		5972.6	8.9	4877.0	3 2+	
		0284.0	5./	4303.3	2.	
		6369.5	<1.1	4479.98	4 ⁻	
		7030.2	5.9	3930.3 3810-19	2 · 3-	
		1039.2	5.9	3810.18	3	

45

 $^{38}_{18}\mathrm{Ar}_{20}\text{-}45$

	Adopted Levels, Gammas (continued)													
						$\gamma(^{38}$	Ar) (continued)							
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments							
10850.1	(2 ⁻ ,3 ⁻)	7472.4 [@] 8681.6	<1.5 100	3376.9 2167.472	0^+ 2 ⁺									
10857 10873.8	1 ⁻ (0 ⁺ to 3 ⁻)	10848.4 [@] 10855 x	<0.7 100	$\begin{array}{c} 0.0\\ 0.0\end{array}$	0+ 0+	(E1)	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances. I _{γ} : 27% γ absolute branching is unobserved in (p, γ) :resonances. Additional information 69.							
10890	(5 ⁻ to 8 ⁻)	3639.8 4028 4520.0 4534.9 5278.8 5716.0 5789.7 6307.7 [@] 6393.2 [@] 6936.6 7062.9 [@] 7496.1 [@] 8705.3 10872.1 [@] 2765 2282	$5.0 \\ 3.2 \\ 2.4 \\ 3.9 \\ 5.2 \\ 3.0 \\ 6.3 \\ <1.5 \\ <1.3 \\ 6.3 \\ <0.2 \\ <0.2 \\ 100 \\ <0.4 \\ 59 \ 10 \\ 100 \ 10 \ 100\ \ 100\ 100\ \ 1$	7233.8 6852 6353.5 6338.6 5594.6 5157.3 5083.6 4565.5 4479.98 3936.5 3810.18 3376.9 2167.472 0.0 8125.0 7508.12	$(1^{-} \text{ to } 4^{+})$ $(1,2^{+})$ 1^{-} $1^{-},2^{-},3^{-}$ 2^{+} $(2)^{-}$ 2^{+} 4^{-} 2^{+} 3^{-} 0^{+} 2^{+} 0^{+} (6^{-}) 7^{-}									
10914.5	(1 ⁻ ,2,3 ⁻)	x 3680.5 3813.5 4010.5 4044.4 4090.3 4292.6 4428.8 4560.7 5056.6 5089.2 5319.5 5400.8 5830.4 6037.0 6348.4 6977.3	26 22 10 9 20 13 46 28 19 1.9 44 38 28 31 34 12	7233.8 7100.8 6903.8 6869.9 6824.0 6621.6 6485.4 6353.5 5857.5 5824.9 5594.6 5513.3 5083.6 4877.0 4565.5 3936.5	$(1^{-} to 4^{+}) (1^{-} to 4^{+}) (2^{-}, 3^{-}) (2^{+}, 3^{-}) (1^{-}, 2, 3^{-}) (1^{-}, 2, 3^{-}) (1^{-}, 2, 3^{-}) (1^{-}, 2, 3^{-}) (1^{-}, 2, 3^{-}) (2$		I _y : 10% γ absolute branching is unobserved in (p, γ):resonances. Additional information 70.							

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -46

					-	Adopted	Levels, Gammas (continued)				
						,	$\gamma(^{38}\text{Ar})$ (continued)				
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments				
10914.5	(1-,2,3-)	7103.6	81 100	3810.18	$\frac{3^{-}}{2^{+}}$						
10933	1-	8764 10931	47 100	2167.472 2167.472 0.0	2^{+} 0 ⁺	(E1)	I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances. Mult : D from $\gamma(\theta)$ in (α, γ) :resonances.				
10945.0	(1 ⁻ ,2 ⁺)	х					γ : 21% γ absolute branching is unobserved in (p, γ):resonances. Additional information 71.				
10947.4	(2 ⁻ ,3,4 ⁺)	3262 4041.0 4370.4 4448.9 4591.2 4606.1 4694.8 5210.7 5350.0 5392.4 5431.3 5787.2 6067.5 6378.9 7007.8 7134.1 7567.3 8776.4 10943.3 x 3264 4077.3 4123.2 4737.7 5089.5 5433.7 5863.3 6381.3 6466.8 7010.2 7136.5 7569.7 8778.8	$\begin{array}{c} 2.5\\ 14.0\\ 6.0\\ 7.5\\ 11.1\\ 22\\ 8.5\\ 15.1\\ 13.1\\ 4.5\\ 8.5\\ 13.6\\ 91\\ 39\\ 7.1\\ 20\\ <2\\ 100\\ 13.6\\ \\ \\ 5\\ 7\\ 5\\ 5\\ 5\\ 21\\ 11\\ 64\\ 18\\ <2.5\\ 32\\ <1.4\\ 100\\ \end{array}$	7683 6903.8 6574.3 6495.8 6353.5 6338.6 6249.9 5733.9 5594.6 5552.21 5513.3 5157.3 4877.0 4565.5 3936.5 3810.18 3376.9 2167.472 0.0 7683 6869.9 6824.0 6209.4 5857.5 5513.3 5083.6 4565.5 4479.98 3936.5 3810.18 3376.9 2167.472	$(3^{-},4^{+})$ $2^{-},3^{-}$ 1^{-} $(2^{-},3^{-})$ 1^{-} $1^{-},2^{-},3^{-}$ 2^{+} $1^{-},2^{+},3^{-}$ 2^{+} 3^{-} 2^{+} 3^{-} 2^{+} 3^{-} 2^{+} 3^{-} 2^{+} 3^{-} 2^{+} 3^{-} 0^{+} 2^{+} 0^{+} $(2^{-},3,4^{+})$ $(2^{+},3^{-})$ 4^{-} (2^{-}) 2^{+} 4^{-} 2^{+} 3^{-} $(2^{+})^{-}$ $(2^{-})^{-}$ 2^{+} 4^{-} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} $(2^{-})^{-}$ 2^{+} 4^{-} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} $(2^{-})^{-}$ 2^{+} 4^{-} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} $(2^{+})^{-}$ $(2^{-})^{-}$ 2^{+} 4^{-} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 3^{-} 0^{+} 2^{+} 3^{-} 3^{-} 0^{+} 2^{+} 3^{-}		I _y : 23% γ absolute branching is unobserved in (p,γ):resonances. Additional information 72.				

 $^{38}_{18}\mathrm{Ar}_{20}$ -47

					Ado	pted Leve	els, Gammas (continued)
						$\gamma(^{38}$	Ar) (continued)
						<u>/(-</u>	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments
10947.4	$(2^{-},3,4^{+})$	10945.7 [@]	< 0.7	0.0	0^{+}		
10947.5	(9 ⁻)	773 1	28 10	10174.29	9-		E_{γ} , I_{γ} : from (²⁸ Si, α 2p γ).
		1598 2	10 4	9349.6	(7 ⁻)		E_{γ} , I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$).
		2378 1	100 7	8569.59	8+	D	E_{γ} , I_{γ} , Mult.: from (²⁸ Si, $\alpha 2p\gamma$).
		3439 2	10 4	7508.12	7-		E_{γ} , I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$).
		3877.1 [@]	43 7	7070.19	(6) ⁻		E_{γ} , I_{γ} : γ from $(\alpha, p\gamma)$ only, treated as questionable by the evaluator since it involves mult=M3, which is unlikely. In addition a γ ray with the branching ratio reported
							in $(\alpha, p\gamma)$ should have been seen in $({}^{28}Si, \alpha 2p\gamma)$.
10963.3	$2^{(+)}$	Х					I_{γ} : 32% γ absolute branching is unobserved in (p,γ) :resonances. Additional information 73.
		3069.8	4.7	7893.4	$(1^+, 2^+)$		
		3280	5.3	7683	$(3^{-},4^{+})$		
		3532.1	11.3	7431.0	$(2^{-},3,4^{+})$		
		3593	7.2	7370	(1^{+})		
		3629	13.4	/334 7233 8	$(1 \text{ to } 4^+)$ $(1^- \text{ to } 4^+)$		
		4015 2	25	6947.9	$(1^{+}10^{+})$		
		4059.3	26	6903.8	$2^{-}.3^{-}$		
		4139.1	100	6824.0	$(2^+, 3^-)$		
		4190.4	1.9	6772.7	1-		
		4388.7	26	6574.3	1-		
		4609.5	73	6353.5	1-		
		4713.1	13.4	6249.9	2^+		
		4/49.2	0.0 10.7	0213.8 5857.5	(2^{-})		
		5138.0	3.4	5824.9	3-		
		5229.0	13.4	5733.9	1-		
		5449.6	11.9	5513.3	3-		
		5613.5	1.9	5349.4	4+		
		5805.5	40	5157.3	2+		
		6085.8	33	4877.0	3-		
		6397.2	33	4565.5	2 ⁺		
		/383.0 870/ 7	0.0	33/0.9 2167 /72	0^{+} 2 ⁺		
10988.2	(2)	X	2.7	2107.472	2		I_{γ} : 15% γ absolute branching is unobserved in (p,γ) :resonances.
		4040 1	27	6947 0	(2^{+})		Auditional information 74.
		4084.2	4.7	6903.8	$2^{-}.3^{-}$		
		4118.1	9.1	6869.9	$(2^{-},3,4^{+})$		
		4649.3	4.1	6338.6	1-,2-,3-		
		4778.5	1.1	6209.4	4-		

From ENSDF

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{\#}$	Comments
10988.2	(2)	5130.3	6.8	5857.5	(2)-			
		5162.9	4.6	5824.9	3-			
		5435.6	4.6	5552.21	$1^+, 2^+$			
		5474.5	2.3	5513.3	3^{-}			
		5830.4 5004_1	2.3	5092.6	$(2)^{-}$			
		5904.1 6110.7	2.5	2082.0 4877.0	(2) 3 ⁻			
		6422.1	2.5	4565 5	3 2+			
		6507.6	2.3	4479.98	<u>4</u> -			
		7051.0	9.1	3936.5	2+			
		7177.3	11.4	3810.18	3-			
		7610.5	100	3376.9	0^{+}			
		10986.5	3.0	0.0	0^{+}			
11013	1	5188	<15	5824.9	3-			I_{γ} : from (α, γ) :resonances.
		7635	23	3376.9	0^+ 2 ⁺			I_{γ} : from (α, γ) :resonances.
		8844 11011	29	2107.472	2 ⁺ 0 ⁺	D		I_{γ} : from (α, γ) :resonances.
		11011	100	0.0	0	D		Mult.: from $\gamma(\theta)$ in (α, γ) :resonances.
11032	1-	7095 [@]	<12	3936.5	2^{+}			I_{γ} : from (α, γ) :resonances.
		8863	22	2167.472	2+	(E1+M2)	-0.3 2	I_{γ} : from (α, γ) :resonances.
								Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances; polarity from level scheme.
		11030	100	0.0	0^{+}	(E1)		I_{γ} : from (α, γ) :resonances.
11045.2	(2^{-})	6470.1	25	1565 5	2+			Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances; polarity from level scheme.
11045.2	(5)	0479.1 8876.6	100	4303.3	$\frac{2}{2^{+}}$	$D \pm O$	$\pm 0.07.3$	I_{γ} . Holli (α, γ) . resonances
		0070.0	100	2107.472	2	DIQ	10.07 5	γ . Hom (α, γ) , resonances. Mult. δ : from $\gamma(\theta)$ in (α, γ) :resonances.
11053.7	(2)	х						I_{γ} : 39% γ absolute branching is unobserved in (p, γ):resonances.
								Additional information 75.
		3371	5.5	7683	$(3^{-},4^{+})$			
		3720	6.4	7334	$(1^{-} \text{ to } 4^{+})$			
		3763.9	17	7289.6	$(3^{-},4^{+})$			
		3819.7	24	7233.8	$(1^{-} \text{ to } 4^{+})$			
		4431.8	33 31	6338.6	(1, 2, 3) $1^{-} 2^{-} 3^{-}$			
		4714.0	11.8	6209.4	1,2,3 4^{-}			
		5011.5	100	6041.8	$(3^{-},4^{+})$			
		5195.8	27	5857.5	(2)			
		5458.7	11.8	5594.6	2+			
		5540.0	31	5513.3	3-			
		5895.9	50	5157.3	2+			
		6487.6	20	4565.5	2*			

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Comments
11053.7	(2)	6573.1 [@]	<8	4479.98	4-	
		7116.5 [@]	<8	3936.5	2^{+}	
		7242.8	37	3810.18	3-	
		7676.0 [@]	<5	3376.9	0^{+}	
		8885.1	100	2167.472	2+	
11050.2	$(1, 2^{+})$	11052.0	30	0.0	0^{+}	1 + 170' , should be provided in $(n + 1)$
11039.2	(1,2)	Х				r_{γ} : $1/\%$ γ absolute branching is unobserved in (p,γ) :resonances. Additional information 76.
		4111.1	2.6	6947.9	(2^+)	
		4484.6	6.0 5.2	6574.3 5722.0	l 1-	
		5506.6	2.1	57552.21	1^{+} 2 ⁺	
		5975.1	2.8	5083.6	$(2)^{-}$	
		6349.3	3.8	4709.3	0^{+}	
		6493.1	4.7	4565.5	2+	
		7122.0	<1.7	3936.5	2+	
		7248.3 [@]	<1.3	3810.18	3-	
		7681.5	2.8	3376.9	0^+	
		8890.0 11057 5	100	2107.472	2 0 ⁺	
11066.1	(2)	X	100	0.0	0	I_{γ} : 10% γ absolute branching is unobserved in (p, γ):resonances.
		2606	11 1	7270	(1+)	Additional information 77.
		3830	11.1	7236	(1^{+}) (2^{+})	
		3965.1	3.3	7100.8	$(1^{-} \text{ to } 4^{+})$	
		4118.0	2.6	6947.9	(2 ⁺)	
		4241.8	41	6824.0	$(2^+, 3^-)$	
		4570.0	18.5	6495.8	$(2^{-},3^{-})$	
		4580.4 4815 9	/.4 3 3	0483.4 6249 9	(1, 2, 5) 2^+	
		4852.0	3.7	6213.8	(2^+)	
		5208.2	4.1	5857.5	(2)-	
		5240.8	7.4	5824.9	3-	
		5331.8	4.8	5733.9	$1^{-}_{2^{+}}$	
		54/1.1 5513 5	26	5552 21	2^{+} 1+ 2+	
		5552.4	4.8 3.7	5513.3	3^{-}	
		6188.6	18.5	4877.0	3-	
		6356.2	3.7	4709.3	0+	
		6500.0	11.1	4565.5	2+	

	Adopted Levels, Gammas (continued)												
γ ⁽³⁸ Ar) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	δ #	Comments					
11066.1	(2)	6585.5 7128.9 7255.2 8897.5 11064.4	4.8 52 7.4 100 3.7	4479.98 3936.5 3810.18 2167.472 0.0	4^{-} 2^{+} 3^{-} 2^{+} 0^{+}								
11067	1-	6501 7130 [@] 8898	18 <18 61	4565.5 3936.5 2167.472	2+ 2+ 2+	(E1(+M2))	0.0 2	I _{γ} : from (α, γ) :resonances. I _{γ} : from (α, γ) :resonances. I _{γ} : from (α, γ) :resonances. Mult., δ : D+Q from $\gamma(\theta)$ in (α, γ) :resonances.					
11068 11078 11087	(4 ⁺ to 8 ⁺)	11065 2943 1434 3798	100 100 100	0.0 8125.0 9644 7288.32	0 ⁺ (6 ⁻) (5 ⁻ to 9 ⁻) 6 ⁺	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.					
11096.9	(2+)	x 3203.4 3763 3807.1 3995.9 4192.9 4226.7 4272.6 4522.3 4611.2 4743.1 4758.0 4846.7 4882.8 5239.0 5271.6 5362.6 5501.9 5544.3 5583.2 5747.0 5939.1 6012.8 6530.8 7159.7 7286.0 7719.2	$\begin{array}{c} 4.7\\ 18.7\\ 6.0\\ 5.3\\ 4.0\\ 8.0\\ 6.7\\ 32\\ 3.9\\ 25\\ 33\\ 6.0\\ 13.3\\ 87\\ 5.4\\ 15.4\\ 27\\ 3.3\\ 40\\ 2.6\\ 40\\ 8.0\\ 23\\ 20\\ 20\\ 5.3\end{array}$	7893.4 7334 7289.6 7100.8 6903.8 6869.9 6824.0 6574.3 6485.4 6353.5 6338.6 6249.9 6213.8 5857.5 5824.9 5733.9 5594.6 5552.21 5513.3 5349.4 5157.3 5083.6 4565.5 3936.5 3810.18 3376.9	$(1^+,2^+) (1^- \text{ to } 4^+) (3^-,4^+) (1^- \text{ to } 4^+) (2^-,3^-) (2^-,3,4^+) (2^+,3^-) (2^+,3^-) (1^-,2,3^-) (1^-,2^-,3^-) (2^+) (2)^- (2)^- (2^+) (2)^- $			I _γ : 28% γ absolute branching is unobserved. Additional information 78.					

	Adopted Levels, Gammas (continued)												
γ (³⁸ Ar) (continued)													
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	Comments					
11096.9	(2+)	8928.3	100	2167.472	2+ 0+								
11109 11122.9	(4 ⁻ to 8 ⁻) 3 ⁻	2984 4637.2 6642.3 8954.3	6.7 100 13 14 100	0.0 8125.0 6485.4 4479.98 2167.472	(6^{-}) $(1^{-},2,3^{-})$ 4^{-} 2^{+}	D+Q	+0.11 4	I _y : from (α, γ) :resonances. I _y : from (α, γ) :resonances. I _y : from (α, γ) :resonances. Mult δ : D+O from $\gamma(\theta)$ in (α, γ) :resonances.					
11146.9	(2,3 ⁻)	х						I_{γ} : 31% γ absolute branching is unobserved. Additional information 79.					
		4661.2 4793.1 4808.0 4896.7 4932.8 5321.6 5551.9 5594.2 5633.2 5797.0 6580.8 6666.3 7209.7 7336.0 8978.3 11145.1	$10.4 \\ 6.9 \\ 6.9 \\ 10.4 \\ 17 \\ 6.9 \\ 13.8 \\ 3.5 \\ 3.5 \\ 3.5 \\ 6.9 \\ 6.9 \\ 10.4 \\ 100 \\ 24$	6485.4 6353.5 6338.6 6249.9 6213.8 5824.9 5594.6 5552.21 5513.3 5349.4 4565.5 4479.98 3936.5 3810.18 2167.472 0.0	$(1^{-},2,3^{-})$ 1^{-} $1^{-},2^{-},3^{-}$ 2^{+} (2^{+}) 3^{-} 2^{+} $1^{+},2^{+}$ 3^{-} 4^{+} 2^{+} 4^{-} 2^{+} 3^{-} 2^{+} 0^{+}								
11161.0	(2 ⁻ ,3,4 ⁺)	X						I_{γ} : 11% γ absolute branching is unobserved.					
11163	(6,7,8)	4559.1 4675.3 4684.1 4951.3 5335.7 5608.3 5647.2 6076.9 7223.8 7350.1 8992.4 2672 3039	7.8 15.0 9.4 7.2 9.4 5.0 5.9 28 100 6.3 81 58 100	6601.59 6485.4 6476.6 6209.4 5824.9 5552.21 5513.3 5083.6 3936.5 3810.18 2167.472 8491.1 8124	$\begin{array}{c} 4^{-} \\ (1^{-},2,3^{-}) \\ (0^{+} \text{ to } 3^{-}) \\ 4^{-} \\ 3^{-} \\ 1^{+},2^{+} \\ 3^{-} \\ (2)^{-} \\ 2^{+} \\ 3^{-} \\ 2^{+} \\ (6^{-}) \\ (3^{-} \text{ to } 6^{+}) \end{array}$			I _y : from $(\alpha, p\gamma)$. I _y : from $(\alpha, p\gamma)$.					
		3086 3655	76 70	8077.20 7508.12	7+ 7 ⁻			I_{γ} : from $(\alpha, p\gamma)$.					

I

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Comments
11167.6	(3^{-})	4297.4	2.3	6869.9	$(2^{-},3,4^{+})$	
	(-)	4394.6	0.6	6772.7	1-	
		4593.0	1.1	6574.3	1-	
		4828.7	0.12	6338.6	1-,2-,3-	
		4917.4	0.6	6249.9	2^{+}	
		4957.9	0.6	6209.4	4-	
		5309.7	1.2	5857.5	$(2)^{-}$	
		5342.3	0.5	5824.9	3-	
		5433.3	0.36	5733.9	1-	
		5572.6	2.0	5594.6	2^{+}	
		5653.8	2.5	5513.3	3-	
		6083.5	0.6	5083.6	$(2)^{-}$	
		6290.0	3.3	4877.0	3-	
		6601.5 °	<0.1	4565.5	2+	
		6687.0°	<0.1	44/9.98	4 2 ⁺	
		7250.4	2.0	2920.2 2910-19	2 2-	
		7550.7	<0.4	3810.18	5	
		7789.8	<0.4	3376.9	0^+	
		8999.0	100	2167.472	2+	
11172.0	2-	11165.8	0.7	0.0	0^+	
111/3.0	3	Х				I_{γ} : 18% γ absolute branching is unobserved. Additional information 81.
		3490	4.6	7683	$(3^{-},4^{+})$	
		3721	4.2	7452	$(1^{-} \text{ to } 4^{+})$	
		3741.8	16.7	7431.0	$(2^{-},3,4^{+})$	
		3883.2	8.3	7289.6	$(3^{-},4^{+})$	
		3980.6	12.5	7192.2	$(2^{-},3,4)$	
		4072.0	12.5	7100.8	$(1^{-} \text{ to } 4^{+})$	
		4127	5.4	7046	$(3^{-},4^{+})$	
		4348.6	16.7	6824.0	$(2^+, 3^-)$	
		4551.1	8.3	6621.6	$(1^{-},2,3^{-})$	
		4571.1	1.7	6601.59	4-	
		4676.9	38	6495.8	$(2^{-},3^{-})$	
		4958.9	4.6	6213.8	(2^{+})	
		4963.3	4.2	6209.4	4-	
		5119.4	4.2	6053.2	(4^+)	
		5130.8	8.3	6041.8	$(3^-, 4^+)$	
		5578.0	12.5	5594.6	2	
		6015.2	8.5	515/.5	∠' 2 ⁻	
		0293.4	40	48//.U	3 2+	
		0000.9	3.3	4303.3	2	

From ENSDF

	Adopted Levels, Gammas (continued)												
γ ⁽³⁸ Ar) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments					
11173.0	3-	6692.4 7235.8 7362.1 7795.2 9004.4	4.2 8.3 8.3 1.3 100	4479.98 3936.5 3810.18 3376.9 2167.472	4 ⁻ 2 ⁺ 3 ⁻ 0 ⁺ 2 ⁺								
11174 11175	(5 ⁻ to 9 ⁻) 1 ⁻	2201 6017 [@] 7238 9006	100 <24 45 100	8972.85 5157.3 3936.5 2167.472	7- 2+ 2+ 2+ 2+	(E1(+M2))	0.00 3	I _{γ} : from (α, γ) :resonances. I _{γ} : from (α, γ) :resonances. I _{γ} : from (α, γ) :resonances. Mult : D(+O) from $\gamma(\theta)$ in (α, γ) :resonances.					
		11173	93	0.0	0+	(E1)		I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances. Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.					
11184.8	(2 ⁺ ,3 ⁻) (1 ⁻ ,2,3 ⁻)	4236.6 4314.6 4562.9 4610.2 5632.1 5671.0 6027.0 6100.7 6307.2 7247.6 7373.9 9016.2 11183.0 x	$\begin{array}{c} 1.5\\ 3.0\\ 1.1\\ 1.8\\ 3.0\\ 12.1\\ 6.1\\ 1.5\\ 3.0\\ 7.6\\ 3.0\\ 100\\ 0.76\end{array}$	6947.9 6869.9 6621.6 6574.3 5552.21 5513.3 5157.3 5083.6 4877.0 3936.5 3810.18 2167.472 0.0	$\begin{array}{c} (2^+) \\ (2^-,3,4^+) \\ (1^-,2,3^-) \\ 1^- \\ 1^+,2^+ \\ 3^- \\ 2^+ \\ (2)^- \\ 3^- \\ 2^+ \\ 3^- \\ 2^+ \\ 3^- \\ 2^+ \\ 0^+ \end{array}$			I_{γ} : 18% γ absolute branching is unobserved.					
		3205 3963.6 4373.3 4424.6 4843.8 4858.7 4947.4 5339.7 5372.3 5463.3 5602.6 5683.8 6039.8 6113.5 6320.0	$14.3 \\ 6.2 \\ 38 \\ 4.8 \\ 19 \\ 9.5 \\ 14.3 \\ 33 \\ 19 \\ 19 \\ 14.3 \\ 14.3 \\ 19 \\ 16 \\ 0.95 \\ 16 \\ 0.95 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	7992 7233.8 6824.0 6772.7 6353.5 6338.6 6249.9 5857.5 5824.9 5733.9 5594.6 5513.3 5157.3 5083.6 4877.0	$(1^{-},2,3^{-})$ $(1^{-}$ to 4 ⁺) $(2^{+},3^{-})$ 1^{-} 1^{-} $1^{-},2^{-},3^{-}$ 2^{+} $(2)^{-}$ 3^{-} 1^{-} 2^{+} 3^{-} 2^{+} $(2)^{-}$ 3^{-} 2^{+} $(2)^{-}$ 3^{-}			Ádditional information 82.					

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -54

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Comments
11197.6	$(1^{-}, 2, 3^{-})$	6631.5	19	4565.5	2+	
1117/10	(1,,=,0)	7260.4	19	3936.5	$\frac{1}{2^{+}}$	
		7386.6	14	3810.18	3-	
		9029.0	100	2167.472	2+	
11199	$(8,9,10^{+})$	2629	100	8569.59	8+	
11201.9	1-	3210	1.3	7992	$(1^{-},2,3^{-})$	
		3308.3	0.9	7893.4	$(1^+, 2^+)$	
		3967.9	0.9	7233.8	$(1^{-} \text{ to } 4^{+})$	
		4377.6	5.4	6824.0	$(2^+, 3^-)$	
		4428.9	1.3	6772.7	1-	
		4520.0	2.7	6681.6	(0,1,2)	
		4627.3	1.4	6574.3	1-	
		4725.0	10.7	6476.6	$(0^+ \text{ to } 3^-)$	
		4848.1	1.6	6353.5	1-	
		4951.7	1.3	6249.9	2+	
		5344.0	3.8	5857.5	$(2)^{-}$	
		5467.6	2.0	5/33.9	1-	
		5606.9	3.2	5594.6	2+	
		6044.1	1.8	5157.3	2	
		6117.8	5.9	5083.6	(2)	
		6635.8	/.1	4565.5	2+	
		7200.0	20	3930.3	2-	
		790.9	1.1	3810.18 2276.0	3 0 ⁺	
		/024.1 0033-3	1.0	2167 472	$\frac{0}{2^+}$	
		11200 1	100	2107.472	0^{+}	
11210.4	(1 ⁻ ,2,3 ⁻)	X	100	0.0	0	I_{γ} : 11% γ absolute branching is unobserved.
					(1	Additional information 83.
		3316.8	1.4	7893.4	$(1^+, 2^+)$	
		3920.6	1.0	7289.6	(3,4')	
		39/6.4	1.1	1233.8	$(1 \text{ to } 4^+)$	
		4202.2	2.0	6947.9	(2^+) $(2^+, 2^-)$	
		4380.1	0.7	0824.0 6772 7	(2, 5)	
		4437.4	1.3	6574.3	1	
		4005.8	1.3	6213.8	(2^+)	
		5352.5	1.3	5857.5	$(2)^{-}$	
		5385 1	0.4	5824.9	3-	
		5476.1	1.6	5733.9	1-	
		5657.7	4.2	5552.21	$1^{+}.2^{+}$	
		5696.6	0.7	5513.3	3-	
		6644.3	2.8	4565.5	2+	

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Comments
11210.4	(1-,2,3-)	7273.2	3.7	3936.5	$2^+_{2^+}$	
11214.7	$(1^{-},2^{+})$	9041.8 x	100	2167.472	21	I_{γ} : 16% γ absolute branching is unobserved.
		(05(0	0.1	5157.0	2+	Additional information 84.
		6036.9	9.1	5157.3 4700.2	2 · 0+	
		6649 6	11.4	4709.5	0^{+}	
		0048.0	45	4303.3	$\frac{2}{2^+}$	
		00/6 1	23	2167 472	$\frac{2}{2^{+}}$	
		11212.0	100	0.0	0^{+}	
11227.3	(2^{+})	X	100	0.0	0	L: 22% γ absolute branching is unobserved.
11227.5	(2)	A				Additional information 85.
		3235	7.0	7992	$(1^{-},2,3^{-})$	
		3775	4.0	7452	$(1^{-} \text{ to } 4^{+})$	
		3796.1	3.0	7431.0	$(2^{-},3,4^{+})$	
		3937.5	7.0	7289.6	$(3^{-},4^{+})$	
		3993.3	10.0	7233.8	$(1^{-} \text{ to } 4^{+})$	
		4279.1	4.5	6947.9	(2^+)	
		4403.0	10.0	6824.0	$(2^+,3^-)$	
		4605.4	25	6021.0	(1, 2, 3)	
		4/31.2	10.0	6495.8	(2,3)	
		4/41.0	5.0	6228.6	(1, 2, 3) $1^{-} 2^{-} 2^{-}$	
		4000.4	3.0	6240.0	$^{1},^{2},^{3}$	
		5013.1	35	6213.8	(2^+)	
		5369.4	10.0	5857 5	$(2)^{-}$	
		5402.0	2.0	5824.9	3-	
		5493.0	2.5	5733.9	1-	
		5674.6	15.0	5552.21	$1^+.2^+$	
		5877.4	1.0	5349.4	4+	
		6069.5	20	5157.3	2+	
		6143.2	5.0	5083.6	$(2)^{-}$	
		6349.7	10.0	4877.0	3-	
		6661.2	35	4565.5	2+	
		7290.0	5.0	3936.5	2+	
		7416.3	50	3810.18	3-	
		9058.7	100	2167.472	2+	
	(at a_)	11225.5	5.0	0.0	0^{+}	
11233.6	(2 ⁺ ,3 ⁻)	х				I_{γ} : 28% γ absolute branching is unobserved. Additional information 86.
		4659.0	6.7	6574.3	1-	
		5258.4	11.1	5974.8	$(0^+ \text{ to } 3^-)$	

						Adopte	ed Levels, Gammas (continued)
							γ ⁽³⁸ Ar) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	Comments
11233.6	$(2^+, 3^-)$	5574.6	6.7	5658.61	5-		
		6075.8	4.4	5157.3	2+		
		6149.5	4.4	5083.6	$(2)^{-}$		
		6667.5	6.7	4565.5	2+		
		9065.0	20	2167.472	2		
11244.9	(2^{+})	11231.8	100	0.0	0.		I a 1007 as absolute bronching is unabsormed
11244.8	(3^{+})	Х					I_{γ} : 19% γ absolute branching is unobserved. Additional information 87
		3875	40	7370	(1^{+})		
		4010.8	8.0	7233.8	$(1^{-} \text{ to } 4^{+})$		
		4143.8	33	7100.8	$(1^{-} \text{ to } 4^{+})$		
		4199	60	7046	$(3^{-},4^{+})$		
		4420.5	60	6824.0	$(2^+, 3^-)$		
		4759.1	30	6485.4	$(1^{-},2,3^{-})$		
		4905.9	16	6338.6	1-,2-,3-		
		4968.4	30	6276.1	4+		
		4994.5	30	6249.9	2+		
		5030.6	65	6213.8	(2^{+})		
		5035.0	90	6209.4	4-		
		5191.2	30	6053.2	(4 ⁺)		
		6367.2	60	4877.0	3		
		0/04.2	80	44/9.98	4 2 ⁺		
		7307.5	20	3930.3	2-		
		0076.2	100	2167 472	3 2+		
11250	1-	9070.2 7872	<10	2107.472	$\frac{2}{0^{+}}$		$I : from (\alpha \alpha)$ resonances
11230	1	11248	100	0.0	0^{+}	(E1)	I_{γ} . from (α, γ) resonances
		11210	100	0.0	Ũ	(21)	Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
11264.9	$(2^{-}, 3^{-})$	х					I_{γ} : 34% γ absolute branching is unobserved.
		43167	18	6947 9	(2^{+})		
		4491.9	100	6772.7	1-		
		4690.3	41	6574.3	1-		
		4911.1	65	6353.5	1-		
		5014.6	11.8	6249.9	2+		
		5439.6	11.8	5824.9	3-		
		5530.6	53	5733.9	1-		
		5751.1	24	5513.3	3-		
		6387.3	41	4877.0	3-		
		6784.3	5.9	4479.98	4-		
		7453.9	18	3810.18	3-		

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -57

	Adopted Levels, Gammas (continued)													
	γ ⁽³⁸ Ar) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π	Mult. [#]	δ#	Comments						
11268.1	3-	x 3978.3 4222 4646.2 4693.5 4782.4 4914.3 4929.2 5053.9 5533.8 5673.0 5715.4 5754.3 6110.3 6184.0 6390.5 7330.8 9090 5	3.2 3.2 16 3.2 9.7 3.2 16 3.2 16 3.2 16 26 6.5 16 6.5 16 6.5 9.7 35	7289.6 7046 6621.6 6574.3 6485.4 6353.5 6338.6 6213.8 5733.9 5594.6 5552.21 5513.3 5157.3 5083.6 4877.0 3936.5 2167.472	$(3^{-},4^{+})$ $(3^{-},4^{+})$ $(1^{-},2,3^{-})$ 1^{-} $(1^{-},2,3^{-})$ 1^{-} $1^{-},2^{-},3^{-}$ (2^{+}) 1^{-} 2^{+} $1^{+},2^{+}$ 3^{-} 2^{+} $(2)^{-}$ 3^{-} 2^{+} 2^{+}	(E1(+M2))	-0.02.3	I _y : 14% γ absolute branching is unobserved. Additional information 89.						
11272.1	(3 ⁻) (1,2 ⁺)	9099.5 x 3902 4776.0 5062.3 5446.8 5677.0 5922.2 6394.5 6706.0 7334.8 7461.1 9103.5 4174.7 4593.8 4653.8 4790.0 4921.9 4936.8 5061.5 5300.5 5417.8 5541.4	$\begin{array}{c} 23\\ 15\\ 46\\ 15\\ 38\\ 15\\ 15\\ 69\\ 100\\ 23\\ 62\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 4.1\\ 2.0\\ 4.1\\ 27\\ 4.1\\ 2.0\end{array}$	7370 6495.8 6209.4 5824.9 5594.6 5349.4 4877.0 4565.5 3936.5 3810.18 2167.472 7100.8 6681.6 6621.6 6485.4 6353.5 6338.6 6213.8 5974.8 5857.5 5733.9	$\begin{array}{c} (1^{+}) \\ (2^{-}, 3^{-}) \\ 4^{-} \\ 3^{-} \\ 2^{+} \\ 4^{+} \\ 3^{-} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ 2^{+} \\ (1^{-} \text{ to } 4^{+}) \\ (0, 1, 2) \\ (1^{-}, 2, 3^{-}) \\ (1^{-}, 2, 3^{-}) \\ (1^{-}, 2, 3^{-}) \\ (1^{-}, 2^{-}, 3^{-} \\ (2^{+}) \\ (0^{+} \text{ to } 3^{-}) \\ (2)^{-} \\ 1^{-} \end{array}$	(E1(+M2))	-0.02 3	Additional information 90.						

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -58

Adopted Levels, Gammas (continued)												
γ (³⁸ Ar) (continued)												
E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	δ [#]	Comments				
11275.7	$(1,2^+)$	5680.6	2.0	5594.6	2+							
		5723.0	2.0	5552.21	$1^+, 2^+$							
		6191.6	2.0	5083.6	$(2)^{-}$							
		6565.8	4.1	4709.3	0^{+}							
		6709.6	4.1	4565.5	2+							
		7338.4	6.1	3936.5	2+							
		7897.9	12.2	3376.9	0^{+}							
		9107.1	10.2	2167.472	2+							
		11273.9	100	0.0	0^{+}							
11285.4	(2+,3)	х						I_{γ} : 35% γ absolute branching is unobserved. Additional information 91.				
		3915	3.6	7370	(1^{+})							
		4461.1	5.4	6824.0	$(2^+, 3^-)$							
		5427.5	5.4	5857.5	$(2)^{-}$							
		5935.5	1.8	5349.4	4+							
		9116.8	100	2167.472	2+							
11289.4	(3 ⁻)	Х						I_{γ} : 37% γ absolute branching is unobserved. Additional information 92.				
		4385.3	3.6	6903.8	2-,3-							
		4465.1	10.7	6824.0	$(2^+, 3^-)$							
		4714.8	10.7	6574.3	1-							
		5775.6	21	5513.3	3-							
		5939.5	3.6	5349.4	4+							
		6205.3	7.1	5083.6	$(2)^{-}$							
		6411.8	10.7	4877.0	3-							
		6808.8	10.7	4479.98	4-							
		7352.1	43	3936.5	2+							
		7478.4	3.6	3810.18	3-							
11200	(7+ , 11+)	9120.8	100	2167.472	2+							
11290	(/' to 11')	1356	100	9934.0	(9')							
11298.7	(10^{+})	1364 <i>I</i>	56 28	9934.0	(9+)	D+Q		$E_{\gamma}, I_{\gamma}, Mult.$: from (²⁰ Si, $\alpha 2p\gamma$). Mult from γ (DCO).				
		1959.5 7	100 6	9339.2	8+	Q		$E_{\gamma}, I_{\gamma}, Mult.$: from (²⁶ Si, $\alpha 2p\gamma$). Mult from γ (DCO).				
11302.4	5-	4256	1.2	7046	$(3^{-},4^{+})$							
		4627.7	8.1	6674.4	5							
		4700.5	5.9	6601.59	4 ⁻							
		4893.7	1.4	6408.32	6' 4-							
		5092.6	4.9	6209.4	4	M1 . 52	0.10 (
		5643.3	40	2628.61	Э 5-	M1+E2	-0.19 6	Nult., o: from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.				
		0/15.9	100	4383.8/	5	MI(+E2)	-0.03 0	Null., o: from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.				
		6736.3	< 0.2	4565.5	2+							
		6821.8	2.2	4479.98	4-							

From ENSDF

	Adopted Levels, Gammas (continued)												
	γ ⁽³⁸ Ar) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments					
11302.4	5-	7365.1 [@] 7491.4 [@] 7924.6 [@]	<0.2 <0.2 <0.2	3936.5 3810.18 3376.9	2+ 3- 0+								
11307.5	5-	9133.7 [@] 11300.6 [@] 4632.8	<0.2 <0.2 7.4	2167.472 0.0 6674.4	2+ 0+ 5 ⁻								
		4705.6 4898.8 [@] 5097.7 5648.4	1.9 0.7 1.9 74	6601.59 6408.32 6209.4 5658.61	4 ⁻ 6 ⁺ 4 ⁻ 5 ⁻	M1+E2	-0.13 6	Mult\delta: from $\gamma(\theta, pol)$ in (p, γ) :resonances.					
11215	1-	6721.0 6826.9 9138.8	100 0.6 1.1	4585.87 4479.98 2167.472	5^{-} 4^{-} 2^{+} $(1^{-}, 2, 2^{-})$	M1(+E2)	-0.03 6	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.					
11515	1	4829 7378 7937 9146	28 32 15 38	3936.5 3376.9 2167.472	(1, 2, 5) 2^+ 0^+ 2^+	(E1(+M2))	-0.2 2	I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances. I_{γ} : from (α, γ) :resonances.					
113167	(3-)	11313 x	100	0.0	0+	(E1)		Mult.: D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances. I_{γ} : from (α, γ) :resonances. Mult.: D(+Q) from $\gamma(\theta)$ in (α, γ) :resonances. L : 26% γ absolute branching is unobserved.					
11316.7	(3 ⁻)	x 3864 4026.9 4215.6 4270 4412.6 4492.4 4714.8 5066.4 5106.9 5263.1 5274.5 5657.6 5721.6 5966.8 6158.9 6439.1 6730.2 6836.1	36 27 27 18 27 18 36 45 9.1 100 18 36 45 64 36 45 64 36 36 36 45 9.1	7452 7289.6 7100.8 7046 6903.8 6824.0 6601.59 6249.9 6209.4 6053.2 6041.8 5658.61 5594.6 5349.4 5157.3 4877.0 4585.87 4479.98	$(1^{-} to 4^{+}) (3^{-},4^{+}) (1^{-} to 4^{+}) (3^{-},4^{+}) 2^{-},3^{-} (2^{+},3^{-}) 4^{-} (4^{+}) (3^{-},4^{+}) 5^{-} 2^{+} 4^{+} 2^{+} 3^{-} 5^{-} 4^{-} $			I _γ : 26% γ absolute branching is unobserved. Additional information 93.					

L

From ENSDF

						Adopted Levels, Gammas (continued)	
						$\gamma(^{38}\text{Ar})$ (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π		Comments
11316.7	(3-)	7379.4	18 27	3936.5 2167 472	$2^+_{2^+}$		
11318.7	(2 ⁺)	X	27	2107.472	2	I_{γ} : 26% γ absolute branching is unobserved.	
		3866	3.1	7452	(1 ⁻ to 4 ⁺)	Additional miormation 94.	
		4084.7	2.4	7233.8	$(1^{-} \text{ to } 4^{+})$		
		4370.5	2.1	6947.9	(2^+)		
		4494.4	6.9 4.5	6824.0	$(2^+,3^-)$		
		4822.0	4.5	0495.8 6485.4	(2, 5) $(1^{-}23^{-})$		
		4979 7	79	6338.6	(1,2,3) $1^{-}2^{-}3^{-}$		
		5104.5	5.5	6213.8	(2^+)		
		5460.8	13.1	5857.5	$(2)^{-}$		
		5493.4	3.8	5824.9	3-		
		5584.4	2.8	5733.9	1-		
		5723.6	28	5594.6	2^+		
		5968.8	1.7	5349.4	4^+		
		6224.6	10.0	5082.6	$(2)^{-}$		
		6441.1	5.5 1 4	4877 0	(2)		
		6608.8	24	4709.3	0^{+}		
		6838.1	2.1	4479.98	4-		
		7381.4	14	3936.5	2+		
		7507.7	3.5	3810.18	3-		
		9150.0	100	2167.472	2+		
11220.2	(2- 4+)	11316.9	10.3	0.0	0^{+}		
11328.3	(3,41)	Х				I_{γ} : 37% γ absolute branching is unobserved. Additional information 95.	
		5118.5	9.4	6209.4	4-		
		5286.1	31	6041.8 5659.61	(3,4')		
		5009.2 5078 /	9.4	53/0/	5 4+		
		6450.7	41	4877.0	3-		
		7517.3	100	3810.18	3-		
		9159.6	3.1	2167.472	2+		
11330.5	$(1^{-} \text{ to } 4^{+})$	Х				I_{γ} : 24% γ absolute branching is unobserved. Additional information 96.	
		4460.3	9.7	6869.9	$(2^{-},3,4^{+})$		
		6172.7	13	5157.3	2^{+}		
		6246.3	9.7	5083.6	$(2)^{-}$		
		6452.9	58	4877.0	3 ⁻ 2 ⁺		
		6/64.4	10	4363.3	2.		

	Adopted Levels, Gammas (continued)												
						$\gamma(^{38}$	⁸ Ar) (continu	ued)					
E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments					
11330.5	$(1^{-} to 4^{+})$	7393.2	29	3936.5	2 ⁺								
		7519.5 9161.8	9.7 100	3810.18	3^{-} 2 ⁺								
11338.6	(2^+)	4434.5	1.5	6903.8	2-,3-								
		4842.5	1.5	6495.8	$(2^{-},3^{-})$								
		4852.9	1.5	6485.4 6213.8	$(1^{-},2,3^{-})$								
		5480.7	1.5	5857.5	$(2)^{-}$								
		5513.3	13	5824.9	3-								
		5785.9	0.9	5552.21	$1^+, 2^+$								
		5824.8 6180.8	2.9	5513.3 5157 3	$\frac{3}{2^+}$								
		6254.4	7.4	5083.6	$(2)^{-}$								
		6461.0	10.3	4877.0	3-								
		7401.3	1.5	3936.5	$2^+_{2^+}$								
		9169.9	0.4	2167.472	2^{+} 0 ⁺								
11348.9	$(2^{-},3,4^{+})$	6471.3	23	4877.0	3-								
		6868.3	100	4479.98	4-								
		7411.6	7.3	3936.5	2^+ 2 ⁺								
11350.6	3-	3358	2.3	7992	$(1^{-},2,3^{-})$								
	-	3898	7.0	7452	$(1^{-} \text{ to } 4^{+})$								
		4060.8	5.0	7289.6	$(3^{-},4^{+})$								
		4158.2	4.0	7192.2	$(2^{-},3,4)$ $(1^{-},t_{2},4^{+})$								
		4304	4.7	7046	$(1^{-},0^{+})$								
		4446.5	11.3	6903.8	2-,3-								
		4748.7	7.7	6601.59	4-								
		4854.5	19	6495.8	(2,3)								
		50/4.1 ° 5140 8	10.0 6.7	6276.1 6209.4	4 · 4-								
		5297.0	3.7	6053.2	(4^+)								
		5525.3	8.0	5824.9	3-								
		5836.8 6000.7	5.7	5513.3 5340.4	3^{-}								
		6266.4	1.3	5083.6	$(2)^{-}$								
		6473.0	100	4877.0	3-	M1+E2	-0.16 10	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.					
		6784.4	9.7	4565.5	2^+								
		6870.0 7413 3	5.7 1 7	4479.98 3936 5	4 2 ⁺								
		1713.3	1./	5750.5	-								

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
11350.6	3-	7539.6	63	3810.18	3-	M1+E2	-0.20 10	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		7972.8@	< 0.3	3376.9	0^{+}			
		9181.9	50	2167.472	2+	E1(+M2)	+0.04 7	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		11348.8 [@]	< 0.3	0.0	0^{+}	. ,		
11354.6	3-	4752.7	3.9	6601.59	4 ⁻			
		4868.9	44	6485.4	$(1^{-},2,3^{-})$			
		5840.8	19	5513.3	3-			
		6477.0	23	4877.0	3-			
		6788.4	14	4565.5	2+			
		7543.6	18	3810.18	3-			
		9185.9	100	2167.472	2+			
11367.4	3-	х						I_{γ} : 47% γ absolute branching is unobserved. Additional information 97.
		4133.4	20	7233.8	$(1^{-} \text{ to } 4^{+})$			
		4765.5	20	6601.59	4-			
		5509.5	20	5857.5	$(2)^{-}$			
		5542.1	13	5824.9	3-			
		5853.6	60	5513.3	3-			
		6489.8	67	4877.0	3-			
		7430.1	40	3936.5	2+			
		7556.4	13	3810.18	3-			
11050 5	(1- 0 0-)	9198.7	100	2167.472	2+			
113/3.7	(1 ⁻ ,2,3 ⁻)	Х						I_{γ} : 21% γ absolute branching is unobserved. Additional information 98.
		4003	10	7370	(1^{+})			
		4469.6	15	6903.8	2-,3-			
		4549.4	50	6824.0	$(2^+, 3^-)$			
		4799.1	15	6574.3	1-			
		4888.0	15	6485.4	$(1^{-},2,3^{-})$			
		5123.4	15	6249.9	2			
		5159.5	10	6213.8	(2^{+})			
		5515.8 5620.4	10	5722 0	(<i>Z</i>)			
		3039.4	10	5155.9	1			

						Adopted	Levels, Gam	mas (continued)
							$\gamma(^{38}\text{Ar})$ (con	tinued)
E _i (level)	J_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	$\delta^{\#}$	Comments
11373.7	(1 ⁻ ,2,3 ⁻)	5778.6 6215.9 6289.5 6496.1 6807.5 7562.7	15 5 100 5 15	5594.6 5157.3 5083.6 4877.0 4565.5 3810.18	$ \begin{array}{c} 2^+\\ 2^+\\ (2)^-\\ 3^-\\ 2^+\\ 3^- \end{array} $			
11374 11379	1 ⁻ (4 ⁺ to 8 ⁺)	9205.0 11372 4970	100 100 100	2167.472 0.0 6408.32	2^+ 0^+ 6^+	(E1)		Mult.: D from $\gamma(\theta)$ in (α, γ) :resonances.
11379.1	(2 ⁺)	Х						I_{γ} : 31% γ absolute branching is unobserved. Additional information 99.
		4145.1 4893.4 5102.6 5128.8 5164.9 5336.9 5521.2 5553.8 5784.0 5826.4 5865.3 6029.2 6294.9 6812.9 6898.4 7441.8 8001.3 9210.4	30 10 30 10 100 70 20 60 20 40 20 10 20 40 90 60 10 50	7233.8 6485.4 6276.1 6249.9 6213.8 6041.8 5857.5 5824.9 5594.6 5552.21 5513.3 5349.4 5083.6 4565.5 4479.98 3936.5 3376.9 2167.472	$(1^{-} \text{ to } 4^{+})$ $(1^{-},2,3^{-})$ 4^{+} (2^{+}) $(3^{-},4^{+})$ $(2)^{-}$ 3^{-} 2^{+} $1^{+},2^{+}$ 3^{-} 4^{+} $(2)^{-}$ 2^{+} 4^{-} 2^{+} 0^{+} 2^{+}			
11393.0	3-	x 4103.2 4791.1 5879.2 6235.2 6308.8 6515.4 6912.3 7582.0 9224 3	2.7 5.4 5.4 2.7 2.7 38 8.1 5.4	7289.6 6601.59 5513.3 5157.3 5083.6 4877.0 4479.98 3810.18 2167 472	$(3^{-},4^{+})$ 4^{-} 3^{-} 2^{+} $(2)^{-}$ 3^{-} 4^{-} 3^{-} 2^{+}			I _{γ} : 37% γ absolute branching is unobserved. Additional information 100.
11399.5	(3-)	9230.8	100	2167.472	2+	D+Q	+0.23 15	Mult., δ : from $\gamma(\theta)$ in (α, γ) :resonances.

 $^{38}_{18}\mathrm{Ar}_{20}$ -64

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π	Comments
11401.5	(1-,2+)	Х				I_{γ} : 38% γ absolute branching is unobserved. Additional information 101.
		6243.6	18	5157.3	2+	
		6691.6	21	4709.3	0^{+}	
		6835.3	100	4565.5	2+	
		7464.2	18	3936.5	2+	
		7590.5	18	3810.18	3-	
11400.2		11399.7	36	0.0	0+	
11409.3	(2)	Х				I_{γ} : I_{γ}^{\prime} γ absolute branching is unobserved. Additional information 102.
		4461.1	1.6	6947.9	(2^{+})	
		4636.3	4.4	6772.7	1-	
		4834.7	2.4	6574.3	1-	
		4923.6	8.0	6485.4	$(1^{-},2,3^{-})$	
		5055.4	8.4	6353.5	1-	
		5132.8	12	6276.1	4 ⁺	
		5159.0	2.8	6249.9	2	
		5199.5	2.4	6209.4	$(2)^{-}$	
		5594 0	4.8	5857.5 5824.0	$\binom{2}{2^{-}}$	
		5674.0	2.8	5733.0	5 1 ⁻	
		5814.2	2.0	5594.6	2^{+}	
		5856.6	20	5552 21	$\frac{2}{1+2^+}$	
		5895.5	2.8	5513.3	3-	
		6059.4	3.2	5349.4	4 ⁺	
		6251.4	24	5157.3	2+	
		6325.1	24	5083.6	$(2)^{-}$	
		6531.7	3.2	4877.0	3-	
		6843.1	100	4565.5	2+	
		7472.0	24	3936.5	2+	
		7598.3	8.0	3810.18	3-	
		9240.6	84	2167.472	2+	
		11407.5	0.8	0.0	0^{+}	
11423.9	(3-)	Х				I_{γ} : 9% γ absolute branching is unobserved. Additional information 103.
		3992.7	4.3	7431.0	$(2^{-},3,4^{+})$	
		4189.9	3.0	7233.8	$(1^{-} \text{ to } 4^{+})$	
		4599.6	12.8	6824.0	$(2^+, 3^-)$	
		4802.0	2.1	6621.6	$(1^{-},2,3^{-})$	
		4849.3	2.1	6574.3	1-	
		4927.8	6.4	6495.8	$(2^{-},3^{-})$	
		5070.0	2.1	6353.5	1 -	

						Adopted	Levels, Gammas (continued)
							$\gamma(^{38}\text{Ar})$ (continued)
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	Comments
11423.9	(3-)	5209.7	6.4	6213.8	(2+)		
		5598.6	4.3	5824.9	3-		
		5828.8	2.1	5594.6	2+		
		58/1.2	13	5552.21	1+,2+		
		5910.1 6266.0	1/	5013.3 5157.3	3 2+		
		6546.3	2.1	4877.0	2 3 ⁻		
		6857.7	1.5	4565 5	2+		
		6943.2	2.1	4479.98	4 ⁻		
		7486.6	8.5	3936.5	2+		
		7612.9	4.3	3810.18	3-		
		9255.2	100	2167.472	2+		
11428	$(4^+ \text{ to } 8^+)$	5019	100	6408.32	6+		
11428.9	$(3,4^{+})$	Х					I_{γ} : 23% γ absolute branching is unobserved.
		3746	17	7683	$(3^{-} 4^{+})$		Additional mormation 104.
		4139.1	11	7289.6	$(3^{-},4^{+})$		
		4194.9	5.6	7233.8	$(1^{-} \text{ to } 4^{+})$		
		4524.8	11	6903.8	2-,3-		
		4604.6	22	6824.0	$(2^+, 3^-)$		
		5152.4	78	6276.1	4+		
		5375.3	39	6053.2	(4^{+})		
		5603.6	22	5824.9	3-		
		58/6.2	5.6	5552.21	1',2'		
		5915.1 6070.0	5.0 17	5315.5 5340.4	5 4 ⁺		
		6271.0	56	5157 3	+ 2 ⁺		
		6344.7	5.6	5083.6	$(2)^{-}$		
		6551.3	5.6	4877.0	3-		
		6862.7	22	4565.5	2^{+}		
		6948.2	5.6	4479.98	4-		
		7491.6	17	3936.5	2+		
		7617.9	100	3810.18	3-		
11421.0	1 -	9260.2	33	2167.472	2*		
11431.9	1	Х					I_{γ} : 56% γ absolute branching is unobserved in (p, γ):resonances. Additional information 105.
		6554.3	52	4877.0	3-		I_{γ} : from (α, γ) :resonances only.
		6865.7	33	4565.5	2^+_{0+}		
		8054.1	11	3376.9	0^+		
		9263.2	19	2167.472	2' 0+	(E1)	Mult : D from $\alpha(\theta)$ in (α, α) resonances
		11430.1	100	0.0	0	(E1)	Mutt. D from $\gamma(\sigma)$ in (α, γ) :resonances.

	Adopted Levels, Gammas (continued)											
						$\gamma(^{38}$	³ Ar) (contir	nued)				
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments				
11435.9	(2+,3-)	х						I_{γ} : 22% γ absolute branching is unobserved. Additional information 106.				
		3542.3	3.6	7893.4	$(1^+, 2^+)$							
		3753	14	7683	$(3^{-},4^{+})$							
		3984	100	7452	$(1^{-} \text{ to } 4^{+})$							
		4102		7236	$(1 \ 10 \ 4^{\circ})$							
		4487.7	20	6947.9	(2^+)							
		4584	36	6852	$(1,2^+)$							
		4611.6	3.6	6824.0	$(2^+, 3^-)$							
		4662.9	18	6772.7	1^{-}							
		4814.0 4861-3	/3 18	6574 3	(1, 2, 3) 1^{-}							
		4939.8	33	6495.8	$(2^{-},3^{-})$							
		5082.0	6.4	6353.5	1-							
		5096.9	6.4	6338.6	1-,2-,3-							
		5159.4	10.0	6276.1	4+ 2+							
		5185.0 5221.7	18 6.4	6249.9 6213.8	(2^+)							
		5578.0	6.4	5857.5	$(2)^{-}$							
		5610.6	5.5	5824.9	3-							
		5701.5	18	5733.9	1-							
		5883.2	27	5552.21	$1^+, 2^+$							
		5922.1 6351.7	/.3	5082.6	$\frac{3}{(2)^{-}}$							
		6558 2 3	6	4877.0	3-							
		6726.0	2.7	4709.3	0^{+}							
		6849.4	15	4585.87	5-							
		6869.7	3.6	4565.5	2^+							
		7498.6 7624.0	18	3936.5	2							
		9267.2	82 45	2167.472	$\frac{5}{2^+}$							
		11434.1	7.3	0.0	$\frac{1}{0^{+}}$							
11442.9	3-	4841.0	33	6601.59	4-			I_{γ} : from (α, γ) :resonances.				
		6962.2	10	4479.98	4-		0.02.0	I_{γ} : from (α, γ) :resonances.				
		9274.2	100	2167.472	21	(E1(+M2))	+0.023	L_{γ} : from (α, γ) :resonances. Mult δ : $D(+\Omega)$ from $\alpha(\theta)$ in (α, α) :resonances				
11443.6	(2 ⁻ ,3)	х						I_{γ} : 21% γ absolute branching is unobserved. Additional information 107.				
		4109	39	7334	$(1^{-} to 4^{+})$							
		4153.8	12	7289.6	$(3^{-},4^{+})$							
		4841.7	9.4	6601.59	4 -							

 $^{38}_{18}\mathrm{Ar}_{20}$ -67

From ENSDF

 $^{38}_{18}\mathrm{Ar}_{20}$ -67

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Comments
11443.6	(2-,3)	4957.9	10.0	6485.4 6213.8	$(1^{-},2,3^{-})$	
		5390.0	8.9	6053.2	(2^{+}) (4^{+})	
		5401.4 5848.5	14 28	6041.8 5594.6	$(3^-, 4^+)$ 2^+	
		6566.0 6877 4	56 61	4877.0 4565.5	3^{-} 2 ⁺	
		7506.3	56	3936.5	2+ 2-	
		7632.6 9274.9	39 100	3810.18 2167.472	3^{-} 2 ⁺	
11452 11461 3	$(1^{-}2^{+})$	2253	100	9199	(4 ⁻ to 8 ⁻)	I · 38% at absolute branching is unobserved
11401.5	(1,2)					Additional information 108.
		3567.7 4227.2	63 88	7893.4 7233.8	$(1^+, 2^+)$ $(1^- \text{ to } 4^+)$	
		4360.2 4779 4	25 100	7100.8 6681.6	$(1^{-} \text{ to } 4^{+})$ (0.1.2)	
		5603.4	75	5857.5	(0,1,2) $(2)^{-}$	
		5726.9 5866.2	63 25	5733.9 5594.6	1^{-} 2 ⁺	
		5908.6 6303.4	50 100	5552.21 5157 3	$1^+, 2^+$	
		6895.1	38	4565.5	2+ 2+	
		7650.3 8083.5	38 25	3810.18 3376.9	3^{-} 0 ⁺	
		9292.6 11459.4	25 63	2167.472	2^+ 0 ⁺	
11471.2	$(1^-, 2^+)$	3577.6	4.2	7893.4	$(1^+, 2^+)$	
		4646.9 4849.3	2.8 2.8	6824.0 6621.6	$(2^+, 3^-)$ $(1^-, 2, 3^-)$	
		4896.6 5117-3	5.6 25	6574.3 6353 5	1- 1-	
		5132.2	2.5	6338.6	$1^{-},2^{-},3^{-}$	
		5257.0 5613.3	5.6 11.1	6213.8 5857.5	(2^+) $(2)^-$	
		5876.1 6387 0	3.9 8 3	5594.6 5083.6	2^+ (2) ⁻	
		6761.3	2.8	4709.3	0^+	
		6905.0 7533.9	100 5.6	4565.5 3936.5	2+ 2+	
		7660.2 8093.4	5.6 17	3810.18 3376.9	3^{-} 0 ⁺	
					-	

89

 $^{38}_{18}{\rm Ar}_{20}$ -68

					Ac	dopted Levels, Gammas (continued)
						γ ⁽³⁸ Ar) (continued)
E _i (level)	${ m J}_i^\pi$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Comments
11471.2	$(1^-, 2^+)$	9302.5	8.3	2167.472	2+	
11479.0	(2-)	11469.3	78	0.0	0^{+}	I . 1907
114/8.9	(3)	Х				γ : 48% γ absolute branching is unobserved. Additional information 109.
		4109	29	7370	(1^{+})	
		4654.6	71	6824.0	$(2^+, 3^-)$	
		4877.0	57	6601.59	4-	
		4982.7	14	6495.8	$(2^{-}, 3^{-})$	
		5202.4	14	6276.1	4+	
		5264.7	57	6213.8	(2^+)	
		5269.1	29	6209.4	4	
		5425.3	29	6053.2	(4')	
		5621 0	80 14	0041.8 5857.5	$(3,4^{+})$	
		5653.5	14 14	5824.9	(2)	
		5819.8	14	5658.61	5-	
		5883.8	100	5594.6	2^{+}	
		5965.1	14	5513.3	3-	
		6321.0	71	5157.3	2+	
		6394.7	14	5083.6	$(2)^{-}$	
		6601.3	29	4877.0	3-	
		6912.7	14	4565.5	2+	
		7541.6	14	3936.5	2+	
11404		9310.2	57	2167.472	2+	
11484	(7 to 11)	1310	100	10174.29	9 7 ⁺	
11495	$(5^{+} \text{ to } 9^{+})$	3418 4070-1	100	8077.20	$(2^{-} 2 4^{+})$	
11501.5	(2)	4070.1	4.0	6852	(2, 3, 4) $(1, 2^+)$	
		4677.0	9.1	6824 0	$(1,2^{+})$ $(2^{+}3^{-})$	
		4819.4	27	6681.6	(0.1.2)	
		5291.5	0.9	6209.4	4-	
		5526.1	2.7	5974.8	$(0^+ \text{ to } 3^-)$	
		5766.9	2.7	5733.9	1-	
		6343.4	41	5157.3	2+	
		6417.1	27	5083.6	(2)-	
		6791.3	59	4709.3	0^+	
		6935.1	100	4565.5	2	
		/564.0	30 41	3936.3 2276.0	2^{+}	
		0123.3 11499 4	100	0.0	0^{+}	
11511.7	(2)	X	100	0.0	5	I_{γ} : 30% γ absolute branching is unobserved. Additional information 110.

$\gamma(^{\circ}Ar)$ (continued)	$\gamma(^{38}\text{Ar})$	(continued)
----------------------------------	--------------------------	-------------

E _i (level)	J^{π}_i	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
11511.7	(2)	4146	8	7365		
	(-)	4177	8	7334	$(1^{-} \text{ to } 4^{+})$	
		4221.8	12	7289.6	(3 ⁻ ,4 ⁺)	
		4319.2	4	7192.2	$(2^{-},3,4)$	
		5025.9	4	6485.4	$(1^{-},2,3^{-})$	
		5235.2	4	6276.1	4+	
		5301.9	4	6209.4	4	
		5458.1 5460 5	4	0055.2 6041.8	(4^{-})	
		5653 7	0 16	0041.0 5857.5	(3,4)	
		5997.9	8	5513 3	3-	
		6161.8	4	5349.4	4 ⁺	
		6353.8	32	5157.3	2+	
		6427.5	20	5083.6	$(2)^{-}$	
		6945.5	4	4565.5	2+	
		7031.0	8	4479.98	4-	
		7574.4	16	3936.5	2+	
		7700.7	8	3810.18	3	
		9343.0	100	2167.472	2^{+} 0 ⁺	
11514.5	1-	11309.8 X	0	0.0	0	I_{γ} : 19% γ absolute branching is unobserved.
		10511	2.2	5155.0	a +	Additional information 111.
		6356.6	3.3	5157.3	$\frac{2}{(2)}$	
		0430.3 6048-3	5.5 4.0	JU65.0 4565.5	$\binom{2}{2^+}$	
		0345.8	21	2167 472	$\frac{2}{2^{+}}$	
		11512.6	100	0.0	0^{+}	
11519.7	$(1^{-},2^{+},3^{-})$	X	100	010	Ũ	I_{γ} : 50% γ absolute branching is unobserved.
		4640 5	25	(9(0.0	(2-2,4+)	Additional information 112.
		4049.3 1716 7	23 25	0009.9 6772 7	$(2, 3, 4^{\circ})$	
		4740.7 4897.8	23 42	6621.6	$(1^{-} 2 3^{-})$	
		5023.5	17	6495.8	$(2^{-},3^{-})$	
		5305.5	100	6213.8	(2^+)	
		6361.8	67	5157.3	2+	
		6435.5	25	5083.6	(2)-	
		6953.5	33	4565.5	2+	
		7582.4	25	3936.5	2+	
		7708.7	50	3810.18	3-	
11507 ((1.2+)	9351.0	8.3	2167.472	2+	
11527.6	(1,2 ⁺)	Х				I_{γ} : 60% γ absolute branching is unobserved. Additional information 113.

					Ado	pted Leve	ls, Gamm	as (continued)
						$\gamma(^{38}$	Ar) (contir	nued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π	Mult. [#]	δ [#]	Comments
11527.6	$(1,2^+)$	5313.4	18	6213.8	(2+)			
		5552.4	36	5974.8	$(0^+ \text{ to } 3^-)$			
		6817.6	18	4709.3	0^{+}			
		7590.3	91	3936.5	2+			
		8149.8	45	3376.9	0^{+}			
		9358.9	100	2167.472	2+			
11530.2	$(1^{-},2^{+})$	Х						I_{γ} : 19% γ absolute branching is unobserved. Additional information 114.
		6820.2	10.3	4709.3	0^{+}			
		7592.9	8.6	3936.5	2^{+}			
		8152.4	21	3376.9	0^{+}			
		11528.3	100	0.0	0^{+}			
11540.2	1-	Х						I_{γ} : 22% γ absolute branching is unobserved. Additional information 115.
		5186.3	5.1	6353.5	1-			
		7602.9	26	3936.5	2+			
		8162.4	5.1	3376.9	0+			
		9371.5	64	2167.472	2+			
		11538.3	100	0.0	0^+			
11543	$(5^+ \text{ to } 9^+)$	3466	100	8077.20	7*			
11545.3	(1 ⁻ ,2)	Х						I_{γ} : 42% γ absolute branching is unobserved. Additional information 116.
		5687.3	11	5857.5	$(2)^{-}$			
		5810.9	13	5733.9	1-			
		6031.5	7.9	5513.3	3-			
		9376.6	100	2167.472	2+			
		11543.4	21	0.0	0+			
11547	$(7^{-} \text{ to } 11^{-})$	1373	100	10174.29	9-			29
11549.1	(10 ⁻)	1374.7 4	100 3	10174.29	9-	D+Q	+1.3 8	E _γ ,I _γ : from (²⁸ Si,α2pγ). Mult.,δ: from γ(DCO) in (²⁸ Si,α2pγ), ΔJ=1. Original value of δ : +0.5< δ <+2.2.
		1524.4 4	41 3	10024.9	(8 ⁻)	Q		$E_{\gamma}, I_{\gamma}, Mult.:$ from $({}^{28}Si, \alpha 2p\gamma)$.
11552.6	(1)-	Х						I_{γ} : 21% γ absolute branching is unobserved. Additional information 117.
		4728.3	10.0	6824.0	$(2^+, 3^-)$			
		4779.6	2.5	6772.7	1-			
		4930.7	5.0	6621.6	$(1^{-},2,3^{-})$			
		5056.4	7.5	6495.8	$(2^{-},3^{-})$			
		5577.4	10.0	5974.8	$(0^+ \text{ to } 3^-)$			
		5694.6	2.5	5857.5	(2)			

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	J_f^π	Comments	
11552.6	(1)-	5727.2	2.5	5824.9	3-		
		5957.5	12.5	5594.6	2+		
		6675.0	2.5	4877.0	3-		
		6986.4	15	4565.5	2+		
		7741.6	2.5	3810.18	3-		
		8174.8	5.0	3376.9	0+		
		9383.9	20	2167.472	2+		
11560.0	(1-2)	11550.7	100	0.0	0^+		
11569.2	(1,2,3)	Х				I_{γ} : 14% γ absolute branching is unobserved. Additional information 118.	
		4335.1	1.1	7233.8	$(1^{-} \text{ to } 4^{+})$		
		4621.0	1.1	6947.9	(2^{+})		
		4665.1	1.6	6903.8	2-,3-		
		4994.5	1.6	6574.3	1-		
		5834.8	1.6	5733.9	1- 2+		
		5974.1	3.1	5594.6	21		
		6055.4	3.1	5515.5	3 2+		
		6495.0	2.0	50926	$(2)^{-}$		
		0483.0 6601.6	1.0	2082.0 4877.0	$\binom{2}{3^{-}}$		
		7003.0	63	4677.0	3 2+		
		7631.9	0.3 4 7	3936 5	$\frac{2}{2^{+}}$		
		7758.2	47	3810.18	3-		
		9400.5	100	2167.472	2+		
11595	$(4^+ \text{ to } 8^+)$	5186	100	6408.32	6+		
11597.9	4+	Х				I_{γ} : 55% γ absolute branching is unobserved. Additional information 119.	
		4693.8	12	6903.8	2-,3-		
		5555.7	41	6041.8	$(3^{-},4^{+})$		
		5772.5	24	5824.9	3-		
		5938.8	47	5658.61	5-		
		6720.3	100	4877.0	3-		
		7117.2	35	4479.98	4-		
		9429.2	5.9	2167.472	2+		
11599.6	$(1,2^{+})$	Х				I_{γ} : 31% γ absolute branching is unobserved. Additional information 120.	
		4651.4	8.8	6947.9	(2^{+})		
		4747	5.9	6852	$(1,2^+)$		
		4775.3	5.9	6824.0	$(2^+, 3^-)$		
		5349.3	8.8	6249.9	2+		
		5741.6	5.9	5857.5	$(2)^{-}$		
		7033.4	53	4565.5	21		
					Ado	pted Leve	ls, Gammas (continued)
------------------------	--	--	--	--	--	--------------------	--
						$\gamma(^{38})$	Ar) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [#]	Comments
11599.6	(1,2 ⁺)	7662.3 9430.9 11597 7	$12 \\ 100 \\ 29$	3936.5 2167.472	2^+ 2^+ 0^+		
11605.8	$(1,2^+)$	X	2.)	0.0	0		I_{γ} : 39% γ absolute branching is unobserved.
11/00	(5† (0†)	4832.8 5630.6 6447.9 7039.6 9437.1 11603.9	16 58 74 47 100 26	6772.7 5974.8 5157.3 4565.5 2167.472 0.0	1 ⁻ (0 ⁺ to 3 ⁻) 2 ⁺ 2 ⁺ 2 ⁺ 0 ⁺ 7 ⁺		Additional information 121.
11608 11614.7	(5' to 9') 11 ⁻	3531 1440.3 2	100	8077.20 10174.29	9-	E2	 B(E2)(W.u.)=2.5 +19-7 E_γ: weighted average of 1440.9 4 from (²⁸Si,α2pγ), 1440.2 2 from (¹⁶O,2pγ), and 1440.31 25 from (¹⁴N,n2pγ). Mult.: from γ(θ,pol) in (¹⁶O,2pγ), γ(DCO) in (²⁸Si,α2pγ), also supported by γ(θ) in (¹⁴N,n2pγ).
11620 11630	(7 ⁺ to 11 ⁺)	1686 2431	100 100	9934.0 9199	(9 ⁺) (4 ⁻ to 8 ⁻)		
11650.9 11652.1	(9 ⁻) (3,4 ⁺)	2301 2 x	100	9349.6	(7-)	Q	Mult.: from γ (DCO) in (²⁸ Si, α 2p γ) for a doublet structure. I _y : 40% γ absolute branching is unobserved. Additional information 122
		4418.0 4551.0 4781.9 5155.9 5313.1 5442.3 5794.1 6057.0 6138.3 6302.1 6774.5 7085.9 7171.4 7714.8 7841.1 9483.4	$ 18 \\ 9.1 \\ 36 \\ 18 \\ 27 \\ 27 \\ 27 \\ 27 \\ 9.1 \\ 9.1 \\ 100 \\ 18 \\ 18 \\ 73 \\ 55 \\ 73 \\ 73 $	7233.8 7100.8 6869.9 6495.8 6338.6 6209.4 5857.5 5594.6 5513.3 5349.4 4877.0 4565.5 4479.98 3936.5 3810.18 2167.472	$(1^{-} to 4^{+}) (1^{-} to 4^{+}) (2^{-},3,4^{+}) (2^{-},3^{-}) 1^{-},2^{-},3^{-} 4^{-} (2)^{-} 2^{+} 3^{-} 4^{+} 3^{-} 2^{+} 4^{-} 2^{+} 3^{-} 2^{+} 3^{-} 2^{+} \\4^{-} 2^{+} 3^{-} 2^{+} \\4^{-} \\2^{+} \\3^{-} \\2^{+} \\2^$		
	(3)	х					I_{γ} : 11% γ absolute branching is unobserved.

73

I

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Comments
11672.3	(3)	4382.4	7.7	7289.6	$(3^{-},4^{+})$	
		4479.8	5.3	7192.2	$(2^{-},3,4)$	
		4571.2	5.3	7100.8	$(1^{-} \text{ to } 4^{+})$	
		4626 [@]		7046	$(3^{-},4^{+})$	
		4848.0	18	6824.0	$(2^+, 3^-)$	
		5050.3	7.7	6621.6	$(1^{-},2,3^{-})$	
		5070.3	18	6601.59	4-	
		5176.1 5186.5	29	6495.8 6495.4	(2,3) (1-2,2-)	
		5333.3	0.0 12	6338.6	(1, 2, 3) $1^{-} 2^{-} 3^{-}$	
		5395.8	24	6276.1	4+	
		5422.0	7.1	6249.9	2+	
		5458.1	47	6213.8	(2^{+})	
		5618.7	47	6053.2	(4 ⁺)	
		5630.1	11	6041.8	$(3^{-},4^{+})$	
		5814.3	5.9	5857.5 5824.0	(2)	
		5040.9	0.2 6 5	5512.2	3 2-	
		$(222) 2^{(0)}$	0.5 5 2	5240.4	5 4 ⁺	
		6514 4	5.5 8.8	5349.4 5157 3	4 · 2+	
		6588.1	59	5083.6	$(2)^{-}$	
		6794.6	14	4877.0	3-	
		7106.1	7.7	4565.5	2+	
		7191.6	18	4479.98	4-	
		7735.0	18	3936.5	2+	
		/801.2	100	3810.18	3 2+	
11682.7	(4^{+})	y y y y y y y y y y y y y y y y y y y	10	2107.472	2	L: 28% γ absolute branching is unobserved.
110020	(.)				- 1	Additional information 124.
		4394.1	12	7288.32	6' 4 ⁺	
		5400.2 5432.4	12 20	6249 9	4 2+	
		5629.1	8.0	6053.2	(4^+)	
		5640.5	8.0	6041.8	$(3^{-},4^{+})$	
		5857.3	44	5824.9	3-	
		6168.9	8.0	5513.3	3-	
		6332.7	100	5349.4	4 ⁺	
		6805.0 7006.1	12	4877.0	3 5-	
		7090.1	12	4000.07 4565 5	5 2+	
		7871.6	44	3810.18	<u>3</u> -	
					-	

74

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
11703.5	(3 ⁻ ,4 ⁺)	х				I_{γ} : 36% γ absolute branching is unobserved. Additional information 125.
11705.5	(2+)	3711 4020 4164 4469.4 4602.4 4799.4 4879.2 5081.5 5101.5 5217.7 5427.0 5489.3 5649.8 6189.7 6353.5 6825.8 7116.9 7137.3 7222.8 7766.1 7892.4 x 5094.6 5230.8 5377.6 5502.4 5506.8 5574.3 5741.3 5982.2 6558.7 6838.9 7006.6 7779.2 7905.5	$\begin{array}{c} 20\\ 30\\ 10\\ 30\\ 30\\ 40\\ 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	7992 7683 7539 7233.8 7100.8 6903.8 6824.0 6621.6 6601.59 6485.4 6276.1 6213.8 6053.2 5513.3 5349.4 4877.0 4585.87 4565.5 4479.98 3936.5 3810.18 5733.9 5157.3 4877.0 4709.3 3936.5 3810.18	$(1^{-},2,3^{-})$ $(3^{-},4^{+})$ $(3,4,5)$ $(1^{-} to 4^{+})$ $(1^{-} to 4^{+})$ $(1^{-} to 4^{+})$ $2^{-},3^{-}$ $(2^{+},3^{-})$ $(1^{-},2,3^{-})$ 4^{+} (2^{+}) (4^{+}) 3^{-} 4^{+} (2^{+}) (4^{+}) 3^{-} $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ $(1^{-},2,3^{-})$ (2^{+}) 4^{-} $(3^{-},4^{+})$ $(0^{+} to 3^{-})$ 1^{-} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+} 2^{+} 3^{-} 0^{+}	I _γ : 29% γ absolute branching is unobserved. Additional information 125.
		9547.8 11714.7	14 100	2167.472 0.0	2^+ 0^+	

75

 $^{38}_{18}\mathrm{Ar}_{20}$ -75

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
11731.2	(4+)	X			<u>v</u>	I_{γ} : 33% γ absolute branching is unobserved. Additional information 127
		4827.1	33	6903.8	$2^{-},3^{-}$	
		4906.9	53	6824.0	$(2^+,3^-)$	
		5454.7 5517.0	13	02/0.1 6213.8	(2^+)	
		5677.5	100	6053.2	(2^{+})	
		5688.9	20	6041 8	$(3^{-} 4^{+})$	
		5905.8	13	5824.9	3-	
		6072.1	27	5658.61	5-	
		6136.1	33	5594.6	2^{+}	
		6381.2	13	5349.4	4+	
		6853.5	13	4877.0	3-	
		7144.6	6.7	4585.87	5-	
		7165.0	73	4565.5	2+	
		7250.5	6.7	4479.98	4-	
		7793.8	6.7	3936.5	2+	
		7920.1	6.7	3810.18	3-	
11755 6	(2 - 4 +)	9562.4	6.7	2167.472	21	$I = \sqrt{20^{\prime}}$ is absolute branching is unabsormed
11/33.0	(5,4)	Х				I_{γ} : 47% γ absolute branching is unobserved.
		5541.4	14	6213.8	(2^{+})	Additional information 126.
		6160.5	14	5594.6	2^+	
		6241.7	50	5513.3	3-	
		7189.4	36	4565.5	2+	
		7274.9	86	4479.98	4-	
		7818.2	71	3936.5	2+	
		7944.5	7.1	3810.18	3-	
		9586.8	100	2167.472	2+	
11775.0	4*	Х				I_{γ} : 39% γ absolute branching is unobserved. Additional information 129.
		4092	67	7683	(3 ⁻ ,4 ⁺)	
		4236	47	7539	(3,4,5)	
		4486.4	100	7288.32	6^+	
		5498.5	53	6276.1	4' (4+)	
		5/21.5	13	0033.2 5512.2	(4 ⁺) 2 ⁻	
		0201.1 7188 /	15	JJ15.5 4585 87	5 5-	
		7963.9	$\frac{27}{20}$	3810.18	3-	
		9606.2	67	2167 472	2+	
11780.7	$(1,2,3)^{-}$	X	0.7	210/11/2	-	I_{γ} : 29% γ absolute branching is unobserved.
	(-,-,-,-)					Additional information 130.

76

 $^{38}_{18}\mathrm{Ar}_{20}$ -76

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_f^π	Comments
11780.7	$(1.2.3)^{-}$	4492	42	7288.32	6+	
		5284.5	11	6495.8	$(2^{-},3^{-})$	
		5426.8	16	6353.5	1-	
		5955.3	21	5824.9	3-	
		6185.6	16	5594.6	2+	
		6266.8	32	5513.3	3-	
		6622.8	100	5157.3	2+	
		7843.3	53	3936.5	2+	
		7969.6	11	3810.18	3-	
		9611.9	74	2167.472	2+	
11790.5	(2^{+})	Х				I_{γ} : 51% γ absolute branching is unobserved. Additional information 131.
		4886.4	20	6903.8	2-,3-	
		5294.3	20	6495.8	$(2^{-},3^{-})$	
		5580.7	60	6209.4	4-	
		5736.8	20	6053.2	(4^{+})	
		5748.2	30	6041.8	$(3^{-},4^{+})$	
		5932.5	30	5857.5	$(2)^{-}$	
		6195.4	70	5594.6	2^{+}	
		6276.6	100	5513.3	3-	
		7080.5	10	4709.3	0^{+}	
		7224.3	50	4565.5	2+	
		7853.1	10	3936.5	2+	
		7979.4	50	3810.18	3-	
		9621.7	10	2167.472	2+	
		11788.5	10	0.0	0^{+}	
11794.5	$(1^{-},2^{+},3^{-},4^{+})$	Х				I_{γ} : 53% γ absolute branching is unobserved. Additional information 132.
		6280.6	6.8	5513.3	3-	
		9625.7	100	2167.472	2^{+}	
11797.9	$(1^{-},2,3,4^{+})$	Х				I_{γ} : 43% γ absolute branching is unobserved. Additional information 133.
		5301.7	36	6495.8	$(2^{-},3^{-})$	
		5583.7	54	6213.8	(2^{+})	
		5755.6	62	6041.8	$(3^{-},4^{+})$	
		5939.9	27	5857.5	(2)-	
		6202.8	46	5594.6	2+	
		6284.0	100	5513.3	3-	
		7231.7	81	4565.5	2+	
		7860.5	18	3936.5	2+	
		7986.8	73	3810.18	3-	
		9629.1	18	2167.472	2*	

ΓT

$\gamma(^{38}\text{Ar})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	\mathbf{J}_{f}^{π}	Comments
11800.1	(1,2 ⁺)	Х				I_{γ} : 19% γ absolute branching is unobserved. Additional information 134.
		5942.1 6065.7 6715.9 7233.9 9631.3 11798.1	14 12 9.3 9.3 44 100	5857.5 5733.9 5083.6 4565.5 2167.472 0.0	$(2)^{-}$ 1^{-} $(2)^{-}$ 2^{+} 2^{+} 0^{+}	
11805.9	3-	X				I_{γ} : 39% γ absolute branching is unobserved. Additional information 135.
		4374.6 5555.6 5752.2 6210.8 6455.9 6648.0 6721.7 6928.2 7239.7 7325.2 7868.5 7994.8 9637.1	4.8 13 3.9 17 10 5.2 13 13 100 8.7 30 11 35	7431.0 6249.9 6053.2 5594.6 5349.4 5157.3 5083.6 4877.0 4565.5 4479.98 3936.5 3810.18 2167.472	$\begin{array}{c} (2^-,3,4^+) \\ 2^+ \\ (4^+) \\ 2^+ \\ 4^+ \\ 2^+ \\ (2)^- \\ 3^- \\ 2^+ \\ 4^- \\ 2^+ \\ 3^- \\ 2^+ \end{array}$	
11812.2	(1,2 ⁺)	x 9643.4	3.3	2167.472	2.+	I_{γ} : 38% γ absolute branching is unobserved. Additional information 136.
11823.1	(3 ⁻ ,4 ⁺)	11810.2 x	100	0.0	0 ⁺	I _{γ} : 72% γ absolute branching is unobserved. Additional information 137.
11832.0	3-	5221.1 5546.6 5572.8 5613.3 5997.7 6164.0 7236.5 x 6954.3	100 17 42 25 17 8.3 25 36	6601.59 6276.1 6249.9 6209.4 5824.9 5658.61 4585.87 4877.0	4 ⁻ 4 ⁺ 2 ⁺ 4 ⁻ 3 ⁻ 5 ⁻ 5 ⁻ 5 ⁻	I _y : 61% γ absolute branching is unobserved. Additional information 138.
		7245.4 7265.8 7894.6	43 29 50	4585.87 4565.5 3936.5	5 ⁻ 2 ⁺ 2 ⁺	

78

	Adopted Levels, Gammas (continued)											
	γ ⁽³⁸ Ar) (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	δ#	Comments				
11832.0	3-	8020.9 9663.2	21 100	3810.18 2167.472	3- 2+							
11873.8	(3,4 ⁺)	Х						I_{γ} : 39% γ absolute branching is unobserved. Additional information 139.				
		5597.3	13	6276.1	4+							
		5820.1	25	6053.2	(4^{+})							
		6015.8	19	5857.5	$(2)^{-}$							
		6715.9	13	5157.3	2+							
		6789.5	44	5083.6	$(2)^{-}$							
		6996.1 7207.5	69 21	4877.0	$\frac{3}{2^+}$							
		7307.5	56	4303.3	$\frac{2}{4^{-}}$							
		7936.4	13	3936.5	2+							
		9705.0	100	2167.472	2+							
11887.8	(1,2,3)-	Х						I_{γ} : 40% γ absolute branching is unobserved. Additional information 140.				
		6292.6	8.3	5594.6	2+							
		6335.0	8.3	5552.21	$1^+, 2^+$							
		6729.9	17	5157.3	2+							
		6803.5	29	5083.6	(2)-							
		7950.4	88	3936.5	2+ 2+							
11005 7	$(3^{-} 45^{-})$	9/19.0 ×	100	2107.472	2.			L : 67% a absolute branching is unobserved				
11905.7	(3,4,5)	A 5202 7	57	6601 50	4-			Additional information 141.				
		5303.7	56 80	6601.59 5659.61	4 5-							
		0240.3 7028.0	89 80	4877 0	3 3-							
		7319.1	100	4585.87	5-							
		8094.6	33	3810.18	3-							
11915.4	(10^{+})	2378 1	18 5	9537.0	$8^{(+)}$			E_{γ}, I_{γ} : from (²⁸ Si, $\alpha 2p\gamma$).				
		2576.2 8	100 5	9339.2	8+	Q		E_{γ} , I_{γ} : from (²⁸ Si, α 2p γ). Mult : from γ (DCO) in (²⁸ Si, α 2p γ).				
11928.0	4-	2930	1.5 6	8998	$(4^+, 5, 6^-)$							
		3128	4.9 <i>3</i>	8800	$(2^{-} \text{ to } 6^{-})$							
		4431	3.4 6	7497	(3,4,5 ⁻)							
		4496.7	0.6 3	7431.0	$(2^{-},3,4^{+})$							
		4578	1.56	7350	$(3^-, 4^+)$							
		4038.1 5023.8	1.30	1289.0	$(3,4^{\circ})$ $2^{-}3^{-}$							
		5057 7	1.5.9	6869.9	$(2^{-},34^{+})$							
		5326.0	100.0 18	6601.59	4-	M1(+E2)	+0.05 8	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.				

L

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	δ#	Comments
11928.0	4-	5651.4 5718.1 5874.3 6102.6	3.4 9 67.9 15 1.5 6 1.8 9	6276.1 6209.4 6053.2 5824.9	$ \begin{array}{c} 4^+ \\ 4^- \\ (4^+) \\ 3^- \end{array} $	M1(+E2)	-0.02 8	Mult., δ : from $\gamma(\theta, \text{pol})$ in (p, γ) :resonances.
		6268.8 6414.1 6578.0 7050.3	16.2 <i>12</i> 30.9 <i>21</i> 2.5 <i>9</i> 11.3 <i>12</i>	5658.61 5513.3 5349.4 4877.0	5 ⁻ 3 ⁻ 4 ⁺ 3 ⁻	(M1(+E2))	-0.03 9	Mult., δ : D(+Q) from $\gamma(\theta)$ in (p, γ):resonances.
		7341.4 7361 7	20.2 12 4 3 9	4585.87	5- 2+	(M1+E2)	-0.20 10	Mult., δ : D+Q from $\gamma(\theta)$ in (p, γ):resonances.
		7447.2 7990.6 8116.9	21.1 <i>12</i> 0.6 <i>3</i> 5.8 6	4479.98 3936.5 3810.18	2 4 ⁻ 2 ⁺ 3 ⁻	(M1(+E2))	-0.10 10	Mult., δ : D+Q from $\gamma(\theta)$ in (p, γ):resonances.
		8550.1 ^w 9759.2	<2.1 3.1 9	3376.9 2167.472				
11007 5	$(7^{-} to 11^{-})$	11926.0 ^w	<0.3	0.0	0^+			$\mathbf{F} \cdot \mathbf{from} \left(\frac{28}{3} \mathbf{Si} \cdot \sqrt{2m} \right)$
12106.8	$(7 \ 10^{+})$	$2570^{@} 2$	25.8	9537.0	(9) 8 ⁽⁺⁾			E_{γ} . Hold ($3i_{\gamma}a_{2}p_{\gamma}$). E_{γ} L.: from (28 Si $\alpha_{2}p_{\gamma}$)
12100.0	(10)	3537 2	100 17	8569.59	8+			$E_{\gamma}I_{\gamma}$: from (²⁸ Si, α 2p γ).
12394	(3 ⁻ ,4,5 ⁻)	х						I_{γ} : 48% γ absolute branching is unobserved. Additional information 142.
		6184	46	6209.4	4-			
		6352	4.2	6041.8	$(3^{-},4^{+})$			
		6735	4.2	5658.61	5-			
		6880	100	5513.3	3-			
		7516	33	4877.0	3-			
		7807	13	4585.87	5-			
		8583	4.2	3810.18	3-			
12405	(3 ⁻ ,4,5 ⁻)	Х						I_{γ} : 48% γ absolute branching is unobserved. Additional information 143.
		6195	75	6209.4	4-			
		6579	10	5824.9	3-			
		6891	100	5513.3	3-			
		7527	25	4877.0	3-			
		7818	20	4585.87	5-			
		7924	25	4479.98	4-			
		8594	5.0	3810.18	3-			20
13683.7	(12 ⁻)	2068.5 7	100 6	11614.7	11-	D+Q		E_{γ} , I_{γ} : from (²⁸ Si,α2pγ). Mult.,δ: from γ(DCO) in (²⁸ Si,α2pγ), δ=-2.7 +6-8 or -0.30 +8-11.
		2134.9 6	97 13	11549.1	(10 ⁻)	Q		E_{γ} , I_{γ} : from (²⁸ Si, α2pγ). Mult.: from γ(DCO) in (²⁸ Si, α2pγ).

08

 $^{38}_{18}\mathrm{Ar}_{20}\text{--}80$

From ENSDF

$\gamma(^{38}\text{Ar})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _f J	$\int_{f}^{\pi} N$	/Iult. [#]	Comments
14119.7	(8 ⁺ ,9,10,11 ⁺)	2821 2	100 29	11298.7 (10	0+)		E_{γ},I_{γ} : from (²⁸ Si, α 2p γ).
		4185 <i>3</i>	57 29	9934.0 (9	+)		E_{γ} , I_{γ} : from (²⁸ Si, α 2p γ).
14391.2	(12^{+})	2285 [@] 1	82	12106.8 (10	0+)		E_{γ} , I_{γ} : from (²⁸ Si, α 2p γ).
		2475.7 8	100 8	11915.4 (10	0 ⁺) Q	2	E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
							Mult.: from γ (DCO) in (²⁸ Si, α 2p γ).
		3093 2	29 8	11298.7 (1	0+)		E_{γ}, I_{γ} : from (²⁸ Si, α 2p γ).
14877.5	(12^{+})	2962 2	100	11915.4 (1	$0^{+})$		
15393.9	(13 ⁻)	3779 2	100	11614.7 11	- Q	2	E_{γ},δ : from (²⁸ Si, α 2p γ).
17002.3	(14^{+})	2611 <i>1</i>	100	14391.2 (12	2+)		E_{γ} : from (²⁸ Si, α 2p γ).
17780.9		4097 2	100	13683.7 (12	2-)		E_{γ} : from (²⁸ Si, α 2p γ).
18070?	(14^{+})	3192 [@] 3	100	14877.5 (12	2+)		E_{γ} : from (²⁸ Si, α 2p γ).
21662?	(16 ⁺)	3592 [@] 3	100	18070? (14	4+)		E_{γ} : from (²⁸ Si, α 2p γ).

[†] Values with uncertainties are from (p,γ) :resonances and those without uncertainties are from level-energy differences (with the latter also reported in (p,γ) :resonances), unless otherwise noted.

[‡] From (p,γ) :resonances, unless otherwise noted.

81

[#] The assignments are from $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO) and $\gamma(\text{lin pol})$ measurements. In addition, RUL for E2 and M2 transitions is used when level lifetimes are known. The measurements are primarily from the following reactions: ²⁴Mg(¹⁶O,2p\gamma), ²⁷Al(¹⁴N,n2p\gamma), ²⁷Al(¹⁶O, $\alpha p\gamma$), ¹⁶O(²⁸Si, $\alpha 2p\gamma$) and ³⁷Cl(p, γ):resonances. [@] Placement of transition in the level scheme is uncertain.

 $^{38}_{18}{
m Ar}_{20}$

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}Ar_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}\text{Ar}_{20}$

Legend

Level Scheme (continued)

 $^{38}_{18}\text{Ar}_{20}$

Level Scheme (continued)

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}{
m Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18} {\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}{
m Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{
m Ar}_{20}$

8^{A1}20

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}\text{Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$
Legend

 $^{38}_{18}{
m Ar}_{20}$

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18} Ar_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

 $^{38}_{18} Ar_{20}$

Legend

 $^{38}_{18}{
m Ar}_{20}$

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

 $^{38}_{18}{
m Ar}_{20}$

Legend

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{38}_{18}{
m Ar}_{20}$

 $^{38}_{18}{
m Ar}_{20}$

 $^{38}_{18}{\rm Ar}_{20}$

10587 10557

10547

18 fs 11

Adopted Levels, Gammas

Legend

 $^{38}_{18}{
m Ar}_{20}$

Adopted Levels, Gammas Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 1 104-10 1 100 4 2945 400 1 19₆₇ 100 · 4046 26 , 565 (E1)22 1, ³1,55 100 523 IE11,1 . \$263 \$263 (E1/5 , (E1) 100 3 1E1/10 iter) 10 $\frac{(5^- \text{ to } 8^+)}{(4^+ \text{ to } 8^+)}$ 10455 ¢233 10443 5918 \$ 10431 26 fs 12 1 10398 10382 $\frac{1^{-}}{(1^{-} \text{ to } 4^{+})}$ 12 fs 11 (6⁻) 8491.1 (1⁻,2,3⁻) 7992 $<\!4~{\rm fs}$ <u>7628</u> 7508.12 7288.32 (1,2⁺) Ż. $\geq\!42~fs$ $\frac{7^{-}}{6^{+}}$ 27 fs 13 6+ 6408.32 1.0 ps 3 5157.3 23 fs 7 2^{+} 36 fs *3* 0.97 ps +25-20 4565.5 4479.98 3936.5 43 fs 5 2 3-3810.18 56 fs 14 <u>3376.9</u> 22.8 ps 15 0^+ 2167.472 0.458 ps 21 2^{+} 0.0 stable 0^+

 $^{38}_{18}{
m Ar}_{20}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{38}_{18}{
m Ar}_{20}$

 $^{38}_{18}{\rm Ar}_{20}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

 $^{38}_{18} Ar_{20}$

Level Scheme (continued)

Level Scheme (continued)

 $^{38}_{18}{\rm Ar}_{20}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{38}_{18} Ar_{20}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{38}_{18}{\rm Ar}_{20}$

Legend

Level Scheme (continued)

 $^{38}_{18}{
m Ar}_{20}$