³⁷Cl(³He,d) **1970Mo10**

	History				
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017		

 $J^{\pi}(^{37}Cl \text{ g.s.})=3/2^+$.

1970Mo10: E=12 MeV ³He beam was produced from the MP Tandem Van de Graff at the University of Rochester's Nuclear Structure Research Laboratory. Target was 30 μ g/cm² BaCl₂ (99.3% enriched in ³⁷Cl) on a 165 μ g/cm² gold leaf backing. Reaction products were momentum-analyzed with an Engel split-pole magnetic spectrograph (FWHM=15 keV) and detected with nuclear emulsions. Measured σ (E_d, θ). Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data.

1994Ve04: E=25 MeV: measured $\sigma(E_d, \theta)$; deduced spectroscopic factors for 0, 2170 levels.

1971EnZU: KVI annual lab report and priv comm to Endt in 1971 cited as En71e in 1990En08. E=18 MeV, enriched target, magnetic spectrograph, FWHM=10 keV. Five prominent groups shown in the spectrum figure at 10.63, 11.30, 11.35. 11.39 and 11.93 MeV. These are matched with isobaric analog states in ³⁸Cl as stated with the levels below. The details of this study e.g. precise energies of the groups, angular distributions, etc. are not available.

³⁸Ar Levels

E(level) [†]	\mathbf{J}^{π}	L	G [#]	Comments
0		2	0.466	
2175 10		0	2.573	Or L=0+2; G=0.016, 2.47.
3381 10		(2)	0.010	
3815 10		1+3	0.018,0.239	
3941 <i>10</i>		0+2	0.007,0.124	
4484 10		3	0.070	
4566 10		0	0.031	Or L=0+2; G=0.031, 0.002.
4588 10		3	0.685	
4878 10		1 + 3	0.014,0.409	
5087 10		1 + 3	0.007,0.314	
5160 10		0	0.013	Or L=0+2; G=0.012, 0.012.
5512 10		1 + 3	0.002,0.108	
5551 10		0	0.29	Or L=0+2; G=0.026, 0.043.
5597 10		1 + 3	0.002,0.103	L: inconsistent with $J^{\pi}=2^+$ in Adopted Levels.
5657 10		3	0.981	
5732 10		1	0.035	Or L=1+3; G=0.033, 0.043.
5822 10		1 + 3	0.025,0.087	Or L=(1), G=0.028.
5855 10		3	0.190	
6207 10		3	0.452	
6331 10		1+3	0.027,0.089	
6346 10		1+3	0.004,0.013	
6486 10		1	0.294	Or L=1+3; G=0.275, 0.319.
6566 10		1	0.068	Or L=1+3; G=0.064, 0.079.
6593 10		3	0.733	
6611 <i>10</i>		(2)	0.041	
6666 10		3	0.270	
6765 10		1	0.008	
6815 <i>10</i>		1	0.024	Or L=1+3; G=0.023, 0.030.
6896 10		1+3	0.003,0.067	
10626+ 10				J^{n} : possible IAS of ³⁶ Cl g.s., $J^{n}=2^{-}$.
11300 [‡] <i>10</i>				E(level): this peak is wider by ≈ 4 keV in the spectrum figure of 1971EnZU, thus most likely it is a doublet.
				J^{π} : both components are possible IAS of 671, 5 ⁻ state in ³⁸ Cl.
11350 [‡] <i>10</i>	(3 ⁻) [@]			
11390 [‡] <i>10</i>	(3 ⁻) [@]			
11930 [‡] <i>10</i>	(4 ⁻)			J^{π} : possible IAS of 1309, 4 ⁻ state in ³⁸ Cl.

Continued on next page (footnotes at end of table)

³⁸Ar Levels (continued)

- [†] From 1970Mo10, unless otherwise noted. [‡] From text and spectrum figure of 1971EnZU, with uncertainty assumed as 10 keV. [#] Spectroscopic factor G=[(2J_f+1)/(2J_i+1)]C²S where J_i=3/2 and J_f the spin of final level in ³⁸Ar, is defined by $d\sigma/d\Omega(exp)=G\times d\sigma/d\Omega(DWBA)$ in 1970Mo10.

[@] 11350 and 11390 are possible components of IAS of 755,3⁻ state in ³⁸Cl (1971EnZU).