$^{34}S(^{7}Li,t)$ **2005Fu03**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017

2005Fu03: E=26 MeV 7 Li beam was produced from the Peletron accelerator at Kyoto University. Target was Pb 34 S (99.4% enriched in 34 S). Tritons were detected with two sets of ΔE-E telescopes of silicon detectors (FWHM \approx 150 keV) and alpha particles from 38 Ar decay were detected with eight silicon photo-diode detectors. Measured E(t), t- α -coin, t- α (θ). Deduced α -cluster (34 S+ α) states, J, π , L-transfers.

³⁸Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	L	Comments
0	0+		
3377 <mark>a</mark>	0+ @		
3937 <mark>a</mark>	2 ⁺ @		
5349 <mark>a</mark>	4 ⁺ @		
7288 <mark>a</mark>	6 ⁺ @		
9339 <mark>a</mark>	$(8^+)^{@}$		
$10.2 \times 10^3 \frac{\&}{I}$	(2^{+})	2	
$10.8 \times 10^3 \frac{\&}{I}$		2	
11.4×10 ³ & 1		3	
12.2×10 ³ & 1		3	
12.7×10 ³ & 1		3	
14.3×10 ³ & <i>I</i>	` /	3	
15.0×10 ³ <i>l</i>	$(4^+,5^-)$	(4,5)	J^{π} : the angular correlation function is best fitted in forward angles with L=4, but L=5 cannot be excluded due to the rising pattern in the function at backward angles (2005Fu03).

[†] Rounded values from Adopted Levels up to 9338 and from 2005Fu03 above that.

[‡] From L-transfer deduced from theoretical fit to measured angular correlation function in 2005Fu03, unless stated otherwise.

[#] Possible fragment from $K^{\pi}=0^{-}$ band states resulting from coupling between relative motion and spin of excited states of ^{34}S core (2005Fu03).

[®] From Adopted Levels.

[&]amp; Band(A): Possible $K^{\pi}=0^{-}$ parity-doublet with $^{34}S+\alpha$ cluster (2005Fu03).

^a Band(B): $K^{\pi}=0^{+}$ band (2005Fu03).

³⁴S(⁷Li,t) **2005Fu03**

Band(A): Possible K^{π} =0⁻ parity-doublet with $^{34}S+\alpha$ cluster (2005Fu03)

Band(B): K^{π} =0⁺ band (2005Fu03)

$$^{38}_{18}\mathrm{Ar}_{20}$$