27 Al(16 O, α p γ) 2011Ch54

		History		
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 152, 1 (2018)	30-Sep-2017	

2011Ch54: E=34 MeV ¹⁶O beam was produced from Inter University Accelerator Centre (IUAC), New Delhi. Target was Al from ¹⁸O target frame. γ rays were detected by Indian National Gamma Array (INGA) of eighteen Compton-suppressed Clover detectors. Measured E γ , $\gamma\gamma(\theta)$, $\gamma\gamma(\ln \text{ pol})$. Deduced levels.

2017Da13: E=34 MeV beam from the 15UD Pelletron of the IUAC-New Delhi facility. Target was \approx 200 mg/cm² thick Aluminum foil. γ rays were detected with the INGA array. Measured E γ , I γ , lifetime using DSAM technique on a thick target.

1991Ja11: E=60 MeV ¹⁶O beam provided by the Pelletron at TIFR, Bombay. Measured lifetime by recoil-distance method for 4480, 4585 and 7609 levels.
1976Ra05: E=32.5 MeV ¹⁶O beam provided by the HVEC tandem of the University of Cologne. Measured γ(θ,t) for recoil in

1976Ra05: E=32.5 MeV ¹⁶O beam provided by the HVEC tandem of the University of Cologne. Measured $\gamma(\theta,t)$ for recoil in vacuum. Deduced lifetime for 4585 level.

³⁸Ar Levels

E(level) [†]	$J^{\pi \dagger}$	T _{1/2}	Comments
0	0^{+}		
2167	2+	444 fs 25	$T_{1/2}$: from DSAM (2017Da13). Uncertainty from stopping powers, estimated by the authors as $\approx 5\%$, is added in quadrature to the original value of 444 fs 10 in 2017Da13.
3810	3-		
4480	4-	0.93 ps 20	T _{1/2} : from 1991Ja11.
4586	5^{-}	135 ps 4	$T_{1/2}^{1}$: weighted average of 134 ps 4 (1976Ra05) and 136 ps 4 (1991Ja11).
10174		2.6 ps 4	E(level), $T_{1/2}$: the halflife quoted here is for a 7609 level in 1991Ja11 which is taken from 1976Ko10 in ²⁷ Al(¹⁴ N,n2p γ) based on their placement of 1201 γ . This level is now obsolete since the 1201 γ is re-placed from the 10174 level in later studies. So the halflife (presumably 1201 γ) is for the 10174 level.

[†] From Adopted Levels. Energies are rounded values.

$\gamma(^{38}\text{Ar})$

E_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	Comments
106	4586	5-	4480 4-		$R_{ang} = 1.02 \ 2 \ (2011 \text{Ch54}).$
670	4480	4-	3810 3-	M1	$POL = -0.032 \ 12, R_{ang} = 0.90 \ 2 \ (2011Ch54).$
776	4586	5-	3810 3-		$A_2 = -0.241 \ IO \ (1976 \text{Ra05})$, inconsistent with $\Delta J = 2$.
1643	3810	3-	2167 2+	E1	$POL=+0.012 \ 9, R_{ang}=0.83 \ 1 \ (2011Ch54).$ $A_2=-0.256 \ 14 \ (1976Ra05).$
2167	2167	2^{+}	$0 \ 0^+$	E2	$POL = +0.062 \ 14, R_{ang} = 1.06 \ 2 \ (2011Ch54).$

 † Rounded values from Adopted Gammas.

[‡] Deduced by the evaluator from $\gamma\gamma(\theta)$ and $\gamma\gamma(\text{lin pol})$ in 2011Ch54. Positive POL value indicates a dominantly electric transition, while a negative value indicates a dominantly magnetic transition; R_{ang}~0.83 for $\Delta J=1$ dipole transitions and ~1.11 for $\Delta J=2$ quadrupole transitions (2011Ch54).

2^{27} Al(16 O, α p γ) 2011Ch54

Level Scheme

 $^{38}_{18}{
m Ar}_{20}$