9 Be(48 Ca, 38 Al γ) **2015St14**

Type Author Citation Literature Cutoff Date

Full Evaluation Jun Chen NDS 152, 1 (2018) 30-Sep-2017

2015St14: ³⁸Al ions were produced by fragmentation of a 345 MeV/nucleon ⁴⁸Ca beam from the RIBF facility at RIKEN on a 15 mm beryllium target. Fragments were separated and identified using the BigRIPS spectrometer and the zero-degree spectrometer (ZDS), with energy loss measured by a multi-sampling ionization chamber (MUSIC) and positions by PPACs. The selected ions were implanted into the CAITEN detector (Cylindrical Active Implantation Target for Exotic Nuclei), consisting of a segmented movable hollow-cylindrical-shape plastic scintillator and a stationary ring of 24 position-sensitive photomultiplier tubes (PSPMTs). γ rays were detected by three HPGe detectors. Measured βγ(t). Deduced half-life.

2004Gr20 (also 2003Gr22,1995Pe19): E=60 MeV/nucleon, tof method, measured half-life by timing of β (³⁸Al implants) coin.

³⁸Al Levels

E(level)[†] $J^{\pi \dagger}$ $T_{1/2}$ [‡] 0 (0^-) 9.0 ms 7 0+x (5^-) 9.0 ms 7

[†] Shell-model calculations predicts a 0^- ground state and a low-lying 5^- first excited state (2015St14). The authors argue that the proposed 3703-keV level in 38 Si from 38 Al β^- decay could be strongly populated by the decay of isomer while the observed 3656-keV transition could be from the decay of ground state. Brackets around J^{π} were added by the evaluator.

[‡] From β-delayed 418 γ (t), 1074 γ (t), 1159 γ (t) and 1470 γ (t) in ³⁸Al β⁻ decay (2015St14). These γ -ray transitions could be from β-decay of ³⁸Al (0⁻) ground state or (5⁻) isomer or both and thus the evaluator assigned the measured value of $T_{1/2}$ to both states. Other: 7.6 ms 6 for g.s. in 2004Gr20.