Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen and Balraj Singh	ENSDF	31-May-2015			

 $Q(\beta^{-})=12400\ 90;\ S(n)=227\times10^{1}\ 11;\ S(p)=1983\times10^{1}\ 13;\ Q(\alpha)=-13980\ 80$ 2012Wa38

 $Q(\beta^{-}n)=5590 \ 80, \ S(2n)=8380 \ 90, \ S(2p)=36810 \ 200 \ (2012Wa38).$

First identification of ³⁷Si nucleus by 1979Au03.

Particle stability established in ²³⁸U(⁴⁰Ar,X) (1979Au03) and beryllium+⁴⁸Ca reactions (1979We10).

1987Gi05: Ta(⁴⁸Ar,X) E=60 MeV/nucleon. Measured fragment rigidity, tof. Deduced mass excess.

1991Zh24: Th(p,X) E=800 MeV. Measured fragment mass, charge state ratio, velocity histograms. Deduced mass excess.

1991Or01: Ta(⁴⁸Ca,X) E=55 MeV/nucleon. Measured projectile-like spectra at GANIL facility. Measured mass excess=-6.18 MeV 28.

1995ReZZ: Th(p,X) E=800 MeV. Measured neutron emission probabilities. Tof isochronous spectrometer.

2006Kh08: Si(³⁷Si,X) E=49.75 and 43.40 MeV/nucleon. Measured cross sections and average radius at GANIL facility.

2007No13: measured yield in ¹⁸¹Ta(⁴⁰Ar,X) at 100 MeV/nucleon.

Mass measurement: 2007Ju03.

Structure calculations: 2004Kh16 (binding energies), 2008Wi11 (quadrupole deformation parameter, potential energy surfaces for hypernuclei).

³⁷Si Levels

Cross Reference (XREF) Flags

Α	37 Al β^-	decay	(10.7)	ms)
---	----------------------	-------	--------	-----

- **B** ${}^{9}\text{Be}({}^{38}\text{Si}, {}^{37}\text{Si}\gamma)$
- C Coulomb excitation

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0	$(5/2^{-})$	90 ms 60	ABC	$\%\beta^{-}=100; \ \%\beta^{-}n=17 \ 13 \ (1995 \text{ReZZ}); \ \%\beta^{-}2n=?$
				Theoretical $\%\beta^{-}n=18.8, \ \%\beta^{-}2n=0.24 \ (1997Mo25).$
				T _{1/2} : from 1995ReZZ. Other: 1999YoZW.
				J^{π} : $7/2^-$ proposed from syst by 2012Au07, $3/2^-$ proposed in calculations of 1997Mo25.
				$\sigma_{\rm R}$ =2.44 b 7 at 49.75 MeV/nucleon, 2.52 b 7 at 43.40 MeV/nucleon (2006Kh08).
				Average $r_0^2 = 1.192 \text{ fm}^2 25$ (2006Kh08).
68.2 14	(7/2-)		AB	E(level): from ³⁷ Al β^- decay (2013StZY), level energy not resolved in ⁹ Be(³⁸ Si, ³⁷ Si γ) (2014St18).
155.4 <i>12</i>	$(3/2^{-})$	3.0 ns 7	AB	$T_{1/2}$: from analysis of broadened lineshape in ⁹ Be(³⁸ Si, ³⁷ Siy) (2014St18).
693 <i>3</i>	$(3/2^{-})$		В	
717.3	$(3/2)^+$		AB	J^{π} : L(n)=2 in ⁹ Be(³⁸ Si, ³⁷ Siy), $3/2^+$ from shell model predictions.
1270.2 10	$(5/2^+)$		A	
1438 <i>3</i>	$(1/2^{-})$	1.4 ps +30-9	BC	B(E2)↑=0.0101 45 (1999Ib01)
		1		$T_{1/2}$: deduced by evaluators from measured B(E2) in Coulomb excitation

(1999Ib01) and γ -ray branching ratios.

[†] From a least-squares fit to γ -ray energies.

[‡] Values in square brackets are from shell model predictions (2013StZY,2014St18).

Adopted Levels, Gammas (continued)

 $\gamma(^{37}\text{Si})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α [@]	Comments
155.4	(3/2 ⁻)	156 3	100	0 (5/2 ⁻)	[M1]	0.00127 7	B(M1)↓=0.0034 +10-7 (2014St18) B(M1)(W.u.)=0.0019 5
693	(3/2 ⁻)	538 <i>4</i> 692 <i>4</i>	100 9 60 8	$\begin{array}{ccc} 155.4 & (3/2^{-}) \\ 0 & (5/2^{-}) \end{array}$			
717	$(3/2)^+$	562 <i>4</i> 717 <i>4</i>	100 [#] 6 42 [#] 4	$155.4 (3/2^{-})$ 0 (5/2 ⁻)			
1270.2	(5/2 ⁺)	1115 [‡] 1202 [‡]	$88^{\ddagger} 25$	$155.4 (3/2^{-})$ 68.2 (7/2 ⁻)			
1438	(1/2 ⁻)	1202* 1270 [‡] 746 4 1279 5	100 [‡] 25 57 43 100 36	$\begin{array}{c} 08.2 & (7/2^{-}) \\ 0 & (5/2^{-}) \\ 693 & (3/2^{-}) \\ 155.4 & (3/2^{-}) \end{array}$			
		1442 5	43 36	0 (5/2 ⁻)	[E2]		E_{γ} : 1437 27 from Coulomb excitation (1999Ib01).

[†] From ⁹Be(³⁸Si,³⁷Siγ) (2014St18), unless otherwise noted.
[‡] From ³⁷Al β⁻ decay (2013StZY).
[#] From from ³⁷Al decay. Corresponding values from ⁹Be(³⁸Si,³⁷Siγ) are nearly the same, but somewhat less precise.
[@] From BrIcc v2.3a (10-Sep-2014) 2008Ki07, "Frozen Orbitals" appr.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

