⁹Be(³⁸Si,³⁷Siγ) 2014St18

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen and Balraj Singh	ENSDF	31-May-2015

One-neutron knockout reaction.

2014St18: E=86 *1* MeV/nucleon ³⁸Si secondary beam was produced in fragmentation of 140 MeV/nucleon ⁴⁸Ca primary beam with a ⁹Be production target, followed by purification in A1900 fragment separator at NSCL-MSU facility. Secondary ⁹Be target was 287 mg/cm² thick. Reaction residues were identified by an ionization chamber in the focal plane of S800 spectrograph; time-of-flight was measured by a plastic scintillator. Measured E γ , I γ , $\gamma\gamma$ -coin, (³⁵Si) γ -coin using GRETINA array of Ge detectors. Deduced levels, J, π , l-transfer from parallel momentum distributions. Comparison with large-scale shell calculations. See also 2015St06.

2015St06: from the same group as 2014St18; neutron knockout cross sections analyzed for excited states. For experimental details, see 2014St18.

All data are from 2014St18, unless otherwise noted.

³⁷Si Levels

E(level) [†]	Jπ‡	T _{1/2}	L #	Comments
0	$(5/2^{-})$			Total knockout σ =104 mb 3.
0+x	$(7/2^{-})$			Partial knockout σ =47 mb 9 (2014St18,2015St06, includes contribution from 5/2 ⁻).
156 <i>3</i>	$(3/2^{-})$	3.0 ns 7		$T_{1/2}$: from analysis of broadened lineshape (2014St18).
				Partial knockout σ =9 mb 7 (2014St18,2015St06).
693 4	$(3/2^{-})$		0,1	Partial knockout σ =7 mb 3 (2014St18,2015St06).
717 4	$(3/2)^+$		2	Partial knockout σ =19 mb 2 (2014St18,2015St06).
1438? 6	$(1/2^{-})$			Partial knockout $\sigma=3$ mb 1.
1596 5	$(1/2^+)$			Partial knockout $\sigma = 10 \text{ mb } l$ (2014St18,2015St06).

[†] From a least-squares fit to γ -ray energies.

[‡] From shell-model predictions, and from L-transfers in a few cases (2014St18).

[#] From parallel momentum distribution and Eikonal model analysis (2014St18).

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	Comments
156 3	36 5	156	$(3/2^{-})$	0	$(5/2^{-})$	[M1]	$B(M1)\downarrow=0.0034 + 10-7 (2014St18)$
538 4	11 <i>I</i>	693	$(3/2^{-})$	156	$(3/2^{-})$		
562 4	13 <i>I</i>	717	$(3/2)^+$	156	$(3/2^{-})$		
692 4	6.69	693	$(3/2^{-})$	0	$(5/2^{-})$		
716 4	5.3 8	717	$(3/2)^+$	0	$(5/2^{-})$		
746 4	0.8 6	1438?	$(1/2^{-})$	693	$(3/2^{-})$		
903 4	10 <i>I</i>	1596	$(1/2^+)$	693	$(3/2^{-})$		
1279 [†] 5	1.4 5	1438?	$(1/2^{-})$	156	$(3/2^{-})$		
1442 [†] 5	0.6 5	1438?	$(1/2^{-})$	0	$(5/2^{-})$		
^x 1750 6	2.3 7						
x2068 6	1.96						
^x 2115 6	1.8 6						
^x 2323 6	0.8 5						E_{γ} : tentative γ ray.

 $\gamma(^{37}\text{Si})$

[†] Placement of transition in the level scheme is uncertain.

^x γ ray not placed in level scheme.

 $^{37}_{14}\mathrm{Si}_{23}$ -2

