Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	John Cameron, Jun Chen and Balraj Singh, Ninel Nica	NDS 113,365 (2012)	15-Jan-2012

 $Q(\beta^{-}) = -11664.17$; S(n) = 15454.54; S(p) = 1857.639; $Q(\alpha) = -6221.84$ 2012Wa38

Note: Current evaluation has used the following Q record -11664.47 80 *15454.2 4* 1857.63 *9*-6221.8 *5* 2011AuZZ. S(2n)=29769.93 *52*, S(2p)=10364.62 *10* (2011AuZZ).

Values in 2003Au03 are slightly different: $Q(\beta^{-})=-11638\ 22$, $S(n)=15445\ 8$, $S(2n)=29774\ 20$. Others are the same as in 2011AuZZ. Everywhere in comments in this dataset "36Ar(p,p)" is used as abbreviation for "36Ar(p,p),(p,p'),(p,p'),(p,p')):resonances". Isotope shift and quadrupole moment measurement: 1997Be35.

³⁷K Levels

Cross Reference (XREF) Flags

		A ${}^{37}Ca \varepsilon de$ B ${}^{39}Ti \varepsilon 2p$ C ${}^{35}Cl({}^{3}He$ D ${}^{36}Ar(p,p)$	ecay (181.1 ms) decay (31 ms) e,n)),(p,p'),(p,γ),	$ \begin{array}{lll} E & {}^{36}{\rm Ar}({\rm d},{\rm n}\gamma) & {\rm I} & {}^{39}{\rm K}({\rm p},{\rm t}) \\ F & {}^{36}{\rm Ar}({\rm d},{\rm n}) & {\rm J} & {}^{40}{\rm Ca}(\mu^-,\nu 3{\rm n}\gamma) \\ {\rm G} & {}^{36}{\rm Ar}({}^3{\rm He},{\rm d}) & {\rm K} & {}^{40}{\rm Ca}({\rm p},\alpha) \\ {\rm H} & {}^{36}{\rm Ar}({}^7{\rm Li},{}^6{\rm He}) & {\rm L} & {}^{40}{\rm Ca}({}^3{\rm He},{}^6{\rm Li}) \\ \end{array} $
E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
0.0	3/2+	1.225 s 7	ABCDEFGHI JKL	$%ε+%β^+=100$ µ=+0.20321 6 (1971Vo03,1989Ra17,2011StZZ) Q=0.106 4 (2008Mi07) µ: measured by optical pumping with radiative detection (1971Vo03); hyperfine splitting of ³⁷ K g.s. (1968Be19). Q: β-NQR method on polarized ³⁷ K nuclei produced in fragmentation reaction. The quoted uncertainty includes both the statistical and systematic resulting from the line shape of the β-NQR spectrum presented in 2008Mi07. Other: 0.10 4 (1997Be35, optical isotope shift measurement using polarized ³⁷ K nuclei in magneto-optic trap at TISOL, TRIUMF). J ^π : from L=0 in ³⁹ K(p,t). T _{1/2} : weighted mean of: 1.23 s 2 (1958Sc29), 1.25 s 4 (1964Ka24), and 1.223 s 8 (1977Az01); others: 1.2 s 2 (1051Br256) (120, et 22) (21058sc26)).
1370.85 2	1/2+	52 ps <i>51</i>	A DEF IJK	J^{π} : L=0 in ${}^{40}Ca(p,\alpha)$.
1380.25 <i>3</i>	7/2-	10.4 ns 5	DEFGH J L	T _{1/2} : <104 ps in ³⁶ Ar(d,n γ) and >1 ps in ³⁶ Ar(p,p). μ =+5.25 35 (1971Ra22,1989Ra17,2011StZZ) μ : 1971Ra22 measured g=+1.5 <i>I</i> by time-dependent perturbed angular distribution based on which 2005St24 adopted the g-factor. J ^{π} : based on RUL and L=3 from ³⁶ Ar(d,n).
2170.18 <i>13</i>	3/2-	104 fs +69-31	B DEFGH JK	T _{1/2} : weighted average of 9.6 ns <i>14</i> (1967Go ^{18,36} Ar(p,p)) and 10.5 ns 5 (1971Ra ^{22,40} Ca(p,α)); other: >8.3 ns (³⁶ Ar(d,nγ)). J ^π : 1/2 ⁻ ,3/2 ⁻ from L=1 (³⁶ Ar(³ He,d)); ΔJ=1, M1+E2 912γ connecting 5/2 ⁻ ,7/2 ⁻ , 3082 with 1/2 ⁻ ,3/2 ⁻ , 2170 (this level) selects 5/2 ⁻ for 3082 and 3/2 ⁻ for 2170.
2285.24 12	(5/2+,7/2+)	>243 fs	D IJKL	T _{1/2} : from ³⁶ Ar(p,p); other: ls 69 ps (³⁶ Ar(d,n γ)). J ^{π} : 5/2,7/2,9/2 from D(+Q) γ from 7/2 ⁺ , 4732 (³⁶ Ar(p,p)); 5/2 ⁺ ,(7/2 ⁺ ,9/2 ⁺) from L=2(+4) in ³⁹ K(p,t); (5/2 ⁺ ,7/2 ⁺) from (O+O) γ to 3/2 ⁺ a s (³⁶ Ar(p,p))
2750.22 8	5/2+	1.4 fs 3	A DEFG IJKL	J^{π} : L=2 from $\sigma(\theta)$ and Ay(θ) (40 Ca(p, α)). T _{1/2} : weighted average of 0.5 fs 4 (36 Ar(p,p)) and 1.52 fs 14

³⁷K Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} †		XREF			Comments
							$(^{37}\text{Ca}\ \varepsilon\ \text{decay}).$
2967 2 3081.99 9	5/2-	7 fs 3		DEF		K K	J ^{π} : (9/2 ⁻) assumed from analog of 3185 in ³⁷ Ar (⁴⁰ Ca(p, α)). J ^{π} : from 1967Go18: 7/2 ⁻ ,5/2 ⁻ from Δ J=0,1 M1+E2 1702 γ to 7/2 ⁻ , 1380 (1967Go18); Δ J=1, M1+E2 912 γ connecting 7/2 ⁻ ,5/2 ⁻ , 3082 (this level) with 3/2 ⁻ ,1/2 ⁻ , 2170 level selects 5/2 ⁻ for 3082 and 3/2 ⁻ for 2170
3239.5 2	5/2+	97 fs 28	A	D	I	KL	E(level), $T_{1/2}$: from ³⁷ Ca ε decay. J^{π} : 5/2 ⁺ ,7/2 ⁺ from L=2+4 (³⁹ K(p,t)); 7/2 ⁺ excluded by log ft=4.9 from 3/2 ⁺ g s of ³⁷ Ca (³⁷ Ca ε decay)
3272 2						K	J^{π} : (7/2 ⁻) assumed by 1995Ma36 from analog of 3527 in ³⁷ Ar.
3315.0 17	3/2-	2.2 keV 3		DEFG		K	E(level): weighted average of 3315 3 (³⁶ Ar(p,p)) and 3315 2 (⁴⁰ Ca(p, α)). J ^{π} : 1/2 ⁻ , 3/2 ⁻ from L=1; 3/2 ⁻ from Δ J=1 γ to 1/2 ⁺ , 1370; also, the elastic scattering anomaly can Be fitted only for J^{π} =3/2 ⁻ and Γ = Γ _p =2.2 3 keV thus excluding 1/2 ⁻ (all
3622.8 20	3/2+		A	D	I	L	arguments from ³⁰ Ar(p,p)). E(level): from ³⁷ Ca ε decay. I^{π} : I =0+2 in ³⁹ K(p t)
3839 <i>3</i>	1/2+,3/2+,5/2+		A	D	I		E(level): weighted average of 3840 3 (37 Ca ε decay) and 3844 10 (36 Ar(p,p)). I ^{π} : log fr=4.9 from 3/2 ⁺ g s of 37 Ca (37 Ca ε decay)
3853 <i>3</i>			A				$j : \log j = 1.5 \mod 5/2$ g.s. of $\operatorname{Cu}(\operatorname{Cu} \circ \operatorname{uccu})$.
3900?						L	
3962 15		10 keV 4		D	Ι		
4001 <i>4</i> 4018 <i>5</i>	1/2-‡	35 keV		D		K	
4127? 15				D			This energy denotes a pair of close levels (³⁶ Ar(p,p)).
4192 9	(1/2,3/2,5/2)		Α				J^{π} : log ft=6.5 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
4281 19				D	Ι	K	E(level): from 40 Ca(p, α).
4412.8 <i>13</i>	$(1/2, 3/2, 5/2)^+$		A				J^{π} : log ft=5.2 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
4413.2 4	7/2+	<2.1 fs		De		K	XREF: e(4424). J^{π} : 7/2 from $\Delta J=2 \gamma$ to 3/2 ⁺ g.s.; 7/2 ⁺ from RUL (³⁶ Ar(p,p)).
4432.6 3	3/2	<3.5 fs		De			XREF: e(4424). J^{π} : $\Delta J=1$ d(+Q) γ to 1/2 ⁺ , 1371.
4500 4	1/2+‡	0.5 keV 3	A	D		K	E(level): weighted average of 4496 3 (37 Ca ε decay), 4498 4 (40 Ca(p, α)), and 4508 4 (36 Ar(p,p)).
4583 <i>3</i> 4669.6 <i>8</i>	1/2 ^{-‡}	83 keV <i>11</i> <0.8 keV		D D			
4692 9	$(7/2)^+$					K	J^{π} : from L=4 and shell model calculations (⁴⁰ Ca(p, α)).
4721 4732.2 <i>4</i>	1/2 to 7/2 ⁺ 7/2 ⁺	<4.2 fs		D	I		J^{π} : from L=2 (³⁹ K(p,t)). J^{π} : 7/2 from ΔJ =2 γ to 3/2 ⁺ , g.s.; 7/2 ⁺ based on RUL (³⁶ Ar(p,p)).
4737.9 6	$(5/2^{-},7/2)$	<0.3 keV		D		K	J^{π} : from $(p,p'\gamma(\theta))$ (³⁶ Ar (p,p)).
4814.8 8	5/2+	<0.3 keV		D			J^{π} : from $(p,p'\gamma(\theta))$ (³⁶ Ar(p,p)).
4842.6 6	3/2+,5/2+	0.20 keV 8		D			J^{π} : from L=2 (³⁶ Ar(p,p)).
5018.9 11	3/2+#	1.3 keV 1	A	D			n na na na
5049.8 8	3/2+	0.040 keV 5	A	D	Ι		J ^{π} : L=0 in ³⁹ K(p,t); also from $\sigma(\theta)$ and analyzing power (³⁶ Ar(p,p)).
5120.2 16	$1/2^{+}$	0.2 keV 1	A	D			E(level): from ³⁷ Ca ε decay.

³⁷K Levels (continued)

E(level) [†]	Jπ	T _{1/2} †	_	XREF		Comments
						J^{π} : from L=0 in ³⁶ Ar(p,p).
5134 4	5/2-	0.5 keV 2		D		J ^{π} : from (p,p' $\gamma(\theta)$) (³⁶ Ar(p,p)).
5207 7		<0.4 keV		л		$T_{1/2}$: from ³⁰ Ar(p,p).
5264 4	3/2-	<0.4 KeV		D		J^{π} : from L=1 and $(p,p'\gamma(\theta))$ (³⁶ Ar(p,p)).
5323.0 18	$3/2^+, 5/2^+$	0.4 keV	A	D		E(level): from 36 Ar(p,p).
						J^{π} : from L=2 (³⁶ Ar(p,p)).
5342 6	5/2-,7/2-	0.12 keV		D		J^{π} : from L=3 (³⁶ Ar(p,p)).
5357 7	(1/2, 3/2, 5/2)	Z 0 1 T	Α	_		J^{π} : log <i>ft</i> =6.2 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
5422-3	3/2",5/2"	5.0 keV	A	D		E(level): weighted average of 5418 5 (30 Ar(p,p)) and 5424 3 (37 Ca a decay)
						$I^{\pi} \cdot \text{from } I = 2 \left(\frac{3^{6}}{4} \operatorname{Ar}(n n) \right)$
5456 4	1/2+‡	5.0 keV	Α	D		E(level): weighted average of 5459 4 (37 Ca ε decay) and 5451
	-/ -			-		5 (³⁶ Ar(p,p)).
5478 <i>3</i>	3/2+,5/2+	1.0 keV	A	D		E(level): weighted average of 5479.8 21 (37 Ca ε decay) and
						5470 5 (³⁶ Ar(p,p)).
55(0.4	5/2-	0.10.1.37				J^{π} : from L=2 (³⁰ Ar(p,p)).
5568 4	5/2	0.12 KeV	A	D		E(level): weighted average of 5565 / ($^{\circ}$ Ar(p,p)) and 5569 5
						J^{π} : 5/2 ⁻ ,7/2 ⁻ from L=3 (³⁶ Ar(p,p)): 7/2 ⁻ excluded by
						log ft =6.2 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
5624.1 20	$(1/2, 3/2, 5/2)^+$	<0.6 keV	A	D		E(level): from 37 Ca ε decay.
5600						J ^{π} : log ft=5.6 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
571 <i>4 4</i>		<0.6 keV	۸	л	K	$E(level)$; weighted average of 5718 0 (36 Ar(n n)) and 5713 4
5714 4		<0.0 KC V	п	D		$(^{37}\text{Ca} \varepsilon \text{ decay}).$
5736 9	5/2-,7/2-	0.2 keV		D		J^{π} : from L=3 (³⁶ Ar(p,p)).
5788 4	3/2 ^{+#}	2.7 keV 5	A	D		E(level): weighted average of 5786 6 (³⁶ Ar(p,p)) and 5789 5
	ш					$(^{37}$ Ca ε decay).
5932 4	5/2+#	11.4 keV 23	Α	D		E(level): weighted average of 5929 6 (36 Ar(p,p)) and 5933 4
(014 0 21	5/0+#	671-12		D		$({}^{5})$ Ca ε decay).
0014.9 21	5/2	0.7 KeV 15	A	D		$E(1ever)$: weighted average of 0014.7 25 (*Ca ε decay) and 6016 6 (36 Ar(n n))
6047 4	1/2-‡	30 keV	Α	D	к	E(level): weighted average of 6047 4 (37 Ca ε decay) and 6045
	,					9 (³⁶ Ar(p,p)).
6054 10	$1/2^{+\ddagger}$	0.4 keV		D		
6092.3 22	1/2+‡	1.0 keV	A	D		E(level): weighted average of 6091 10 (36 Ar(p,p)) and 6092.4 23 (37 Ca ε decay).
6111 9		<0.6 keV		D		
6125 9	5/2+‡	12 keV		D		24
6138 10	5/2-,7/2-	4.0 keV		D		J^{π} : from L=3 (³⁰ Ar(p,p)).
6223 Q	3/2+ 5/2+	<0.0 KeV		ע ח		I^{π} : from I = 2 (36 Ar(n n))
6237 10	$5/2^{-}, 7/2^{-}$	0.6 keV		D		J^{π} : from L=3 (³⁶ Ar(p,p)).
6274 5		<0.6 keV	A	D		E(level): weighted average of 6274 5 (37 Ca ε decay) and 6275
						9 $({}^{36}Ar(p,p)).$
6323 5	5/2+ #	2.3 keV 5	A	D		E(level): weighted average of 6324 5 (37 Ca ε decay) and 6321 6 (36 Ar(p,p)).
6345 9		<0.6 keV		D		
6371 <i>19</i>				D		

³⁷K Levels (continued)

E(level) [†]	J^{π}	T _{1/2} †		XREF		Comments
6415 4	1/2+‡	2.0 keV	A	D		E(level): weighted average of 6412 <i>10</i> (36 Ar(p,p)) and 6416 5 (37 Ca s decay)
6432 <i>3</i>	(1/2,3/2,5/2)+	<0.6 keV	A	D		E(level): weighted average of 6431 10 (³⁶ Ar(p,p)) and 6432 3 (³⁷ Ca ε decay).
						J ^{π} : log ft=5.3 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
6452 9 6480 <i>10</i>	5/2 ⁻ ,7/2 ⁻	2.0 keV <0.6 keV		D D		J^{π} : from L=3 (³⁶ Ar(p,p)).
6534 9 6543 5	3/2-‡	30 keV	A	D		
6604 5	3/2+#	4.9 keV 10	A	D		E(level): weighted average of 6601 6 (36 Ar(p,p)) and 6606 5 (37 Ca ε decay).
6619 6	5/2 ^{+#}	2.9 keV 6		D		
6626 6	5/2 ^{-#}	5.9 keV 12		D		
6683 4	$(1/2^+)$	<0.6 keV	A	D	I	E(level): weighted average of 6678 <i>10</i> (36 Ar(p,p)), 6684 <i>5</i> (37 Ca ε decay), and 6670 <i>20</i> (39 K(p,t)).
((05 (10	1/2+	0.751.37.11				J^{π} : from isobaric multiplet mass equation (39 K(p,t)).
6685.6 19	$1/2^{+}$	2.75 keV 11		D		J [*] : from $\sigma(\theta)$ and analyzing power (⁵ K(p,t)).
6/14 10	$3/2^{-+}$	60 keV		D		F(1, 1) = (-36A) (-) (740 - 5 (-370) - 1)
6726 10	(1/2,3/2,5/2)	<0.6 keV	а	D		E(level): from ³⁰ Ar(p,p), 6/40 5 from (³⁷ Ca ε decay). J ^{π} : log <i>ft</i> =6.4 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
6748 10	1/2++	6.0 keV	a	D		E(level): from 36 Ar(p,p)), 6740 5 from (37 Ca ε decay).
6802 10	5/2-,7/2-	0.3 keV		D		J^{π} : from L=3 (³⁰ Ar(p,p)).
6824 <i>5</i>	1/2-4	2.0 keV	A	D		E(level): weighted average of 6822 <i>10</i> (36 Ar(p,p)), 6824 <i>5</i> (37 Ca ε decay).
6866 8		40 keV		D		
6912 5	5/2-,7/2-	0.2 keV	A	D		J ^{π} : from L=3 (³⁶ Ar(p,p)). E(level): weighted average of 6912 <i>10</i> (³⁶ Ar(p,p)), 6912 <i>5</i> (³⁷ Ca ε decay).
6974 5	5/2+‡	26 keV	A	D		E(level): weighted average of 6976 9 (36 Ar(p,p)), 6974 5 (37 Ca ε decay).
7006 10		<0.6 keV		D	K	
7073 7	(1/2,3/2,5/2)+		A	D		E(level): weighted average of 7093 <i>15</i> (36 Ar(p,p)), 7071 <i>5</i> (37 Ca ε decay).
	. #					J^{π} : log ft=5.0 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).
7183 4	5/2+#	2.5 keV 5	A	D		E(level): weighted average of 7180 8 (30 Ar(p,p)), 7183 4 (37 Ca ε decay).
7237 5	3/2+#	6.1 keV 12	A	D		E(level): weighted average of 7230 8 (36 Ar(p,p)), 7240 5 (37 Ca ε decay).
7320					K	
7369 4	5/2+#	19 keV 4	A	D		E(level): weighted average of 7359 8 (36 Ar(p,p)), 7370 3 (37 Ca ε decay).
7473.8 18	5/2+ [#]	6.8 keV	A	D		E(level): weighted average of 7471 8 (36 Ar(p,p)), 7473.8 <i>18</i> (37 Ca ε decay).
7495 8	7/2 ^{-#}	0.1 keV		D		
7540 5	3/2 ⁺ #	4.2 keV	A	D		E(level): weighted average of 7527 8 (36 Ar(p,p)), 7542 3 (37 Ca ε decay).
7634 <i>3</i>	5/2+ [#]	14.7 keV	A	D		E(level): weighted average of 7638 8 (36 Ar(p,p)), 7634 3 (37 Ca ε decay).
7661 4	3/2+#	11.5 keV	A	D		E(level): weighted average of 7657 8 (36 Ar(p,p)), 7662 5 (37 Ca

³⁷K Levels (continued)

E(level) [†]	J^{π}	XREF	Comments					
7807 <i>4</i> 7835 <i>4</i> 7836 <i>14</i> 8029 <i>5</i> 8273 <i>5</i> 8314 <i>5</i> 8378 <i>5</i>	$(1/2,3/2,5/2)^{+} (1/2,3/2,5/2)^{+} (11/2)^{+} (1/2,3/2,5/2)^{+} (1/2,3/2)^{+} (1/2,3/2)^{+} (1/2,3/2)^{+} (1/2,3/2)^{$	A A K A A A	ε decay). J ^π : log ft=4.4 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay). J ^π : log ft=4.6 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay). J ^π : from L=6 and shell model calculations. J ^π : log ft=4.9 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay). J ^π : log ft=5.3 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay). J ^π : log ft=5.1 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay). J ^π : log ft=5.1 from 3/2 ⁺ g.s. of ³⁷ Ca (³⁷ Ca ε decay).					

[†] From ³⁶Ar(p,p), unless noted otherwise. [‡] From fit based on single-level dispersion theory (³⁶Ar(p,p)). [#] From $\sigma(\theta)$ and analyzing power (³⁶Ar(p,p)).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α [@]	Comments
1370.85 1380.25 2170.18	1/2 ⁺ 7/2 ⁻ 3/2 ⁻	1370.9 2 1380.2 789.9	100 100 <4	0.0 3/ 0.0 3/ 1380.25 7/	/2 ⁺ /2 ⁺ /2 ⁻	Q+O	+0.127 17		E_{γ} : from ³⁷ Ca ε decay.
2285.24	$(5/2^+, 7/2^+)$	799.3 2170.1 905.0	<4 100 <4	1370.85 1/ 0.0 3/ 1380.25 7/	/2+ /2+ /2 ⁻	D(+Q)	-0.02 9		
2750 22	5/2+	914.4 2285.2 465.0	<4 100 <0.07	1370.85 1/ 0.0 3/ 2285 24 (5	$/2^+$ $/2^+$ $5/2^+$ $7/2^+$	(Q+O)	+0.10 5		
2750.22	5/2	580.0 1369.9 1379.3	0.31 <i>10</i> 1.53 <i>10</i> <0.7	2233.24 (c) 2170.18 3/ 1380.25 7/ 1370.85 1/	/2 ⁻ /2 ⁻ /2 ⁻ /2 ⁺	D(+Q) D(+Q)	+0.02 5 -0.01 2		
		2750.1	100.00 <i>10</i>	0.0 3/	/2+	M1+E2	-0.09 1	0.000576 8	$\alpha(K)=9.16\times10^{-6} \ 13; \ \alpha(L)=7.66\times10^{-7} \ 11;$ $\alpha(M)=8.31\times10^{-8} \ 12; \ \alpha(N+)=0.000566 \ 8$ $\alpha(N)=3.07\times10^{-9} \ 5; \ \alpha(IPF)=0.000566 \ 8$ $B(M1)(W,u,)=0.73 \ 16; \ B(E2)(W,u,)=2.8 \ 9$
3081.99	5/2-	796.7 911.8	<0.6 24.1 7	2285.24 (5 2170.18 3/	5/2 ⁺ ,7/2 ⁺) /2 ⁻	D+Q	+0.13 4		Mult., δ : Δ J=1 (M1+E2) γ from measured
		1701.7	100	1380.25 7/	/2-	(M1+E2)	+0.20 2	0.0001549 22	anisotropy (0° / 90°) in ³⁶ Ar(p,p). $\alpha(K)=2.02\times10^{-5}$ 3; $\alpha(L)=1.687\times10^{-6}$ 24; $\alpha(M)=1.83\times10^{-7}$ 3; $\alpha(N+)=0.0001328$ $\alpha(N)=6.76\times10^{-9}$ 10; $\alpha(IPF)=0.0001328$ 19 B(M1)(W.u.)=(0.44 19); B(E2)(W.u.)=(21 10) Mult., δ : $\Delta J=0,1$ (M1+E2) γ from measured anisotropy (0° / 90°) in ³⁶ Ar(p,p).
3239.5	5/2+	1711.1 3081.9 1069.3 1859.2 1868.6	<1.2 13.5 7 <10 <9 <9	1370.85 1/ 0.0 3/ 2170.18 3/ 1380.25 7/ 1370.85 1/	/2+ /2+ /2 ⁻ /2 ⁻ /2 ⁺	D(+Q)	0.00 5		
3315.0	3/2-	3239.3 564.8 1029.7 1144.8	100 <1.1 <1.0 9.8 5	0.0 3/ 2750.22 5/ 2285.24 (5 2170.18 3/	/2+ /2+ 5/2+,7/2+) /2 ⁻	D+Q	-0.09 4		
4413.2	7/2+	1934.7 1944.1 3314.8 1662.9 2127.9 2242.9	<0.7 100.0 8 3.9 7 <1.6 <1.2 <0.9	1380.25 7/ 1370.85 1/ 0.0 3/ 2750.22 5/ 2285.24 (5 2170.18 3/	/2 ⁻ /2 ⁺ /2 ⁺ /2 ⁺ 5/2 ⁺ ,7/2 ⁺) /2 ⁻	D(+Q) D(+Q)	-0.01 <i>I</i> +0.05 <i>11</i>		Mult.: $\Delta J=1 d(+Q) \gamma ({}^{36}Ar(p,p)).$

6

$\gamma(^{37}\text{K})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	Comments
4413.2	7/2+	3032.8	100.0 4	1380.25 7/2-			
		3042.2	< 0.9	1370.85 1/2+			
		4412.9	9.1 4	$0.0 3/2^+$	Q		Mult., δ : $\Delta J=2 Q(+O) \gamma$, $\delta = -0.02 4$ from $\gamma(\theta)$ (³⁶ Ar(p,p)).
4432.6	3/2	1682.3	<4.4	2750.22 5/2+			
		2147.3	<2.9	2285.24 $(5/2^+, 7/2^+)$			
		2262.3	<2.9	2170.18 3/2-			
		3052.2	<2.9	1380.25 7/2-			
		3061.6	45.6 18	1370.85 1/2+	D+Q	+0.06 4	
		4432.3	100.0 18	$0.0 3/2^+$	D(+Q)	-0.04 7	Mult., δ : $\Delta J=1 d(+Q) \gamma$, $\delta = -0.04$ 7 or +4.7 5 from $\gamma(\theta)$ (³⁶ Ar(p,p)).
4669.6		1919.3	<4	2750.22 5/2+			
		2384.3	<2	2285.24 $(5/2^+, 7/2^+)$			
		2499.3	<3	2170.18 3/2-			
		3289.2	100	1380.25 7/2-			
		3298.6	<3	1370.85 1/2+			
		4669.3	<4	$0.0 3/2^+$			
4732.2	7/2+	1981.9	<3.7	2750.22 5/2+			
		2446.9	100.0 18	2285.24 (5/2+,7/2+)	D(+Q)	-0.03 6	δ: for J(2285)=7/2 (36 Ar(p,p)).
		2561.9	<3.7	2170.18 3/2-			
		3351.8	35.7 22	1380.25 7/2-	D(+Q)	+0.08 12	Mult., δ : $\Delta J=0,1 d(+Q)$ from $\gamma(\theta)$ (³⁶ Ar(p,p)).
		3361.2	<3.7	1370.85 1/2+			
		4731.9	48.2 22	$0.0 3/2^+$	Q(+O)	-0.02 4	Mult., δ : $\Delta J=2 Q(+O) \gamma$ from $\gamma(\theta)$ (³⁶ Ar(p,p)).
4842.6	3/2+,5/2+	2092.3	<11	2750.22 5/2+			
		2557.3	<8	2285.24 (5/2+,7/2+)			
		2672.3	<8	2170.18 3/2-			
		3462.2	100	1380.25 7/2-			
		3471.6	<10	1370.85 1/2+			
		4842.3	<16	$0.0 3/2^+$			
5049.8	3/2+	3669.4	100	1380.25 7/2-			

[†] Deduced by evaluators from differences of initial and final levels, except for few gammas noted in the table whose $E\gamma's$ were measured precisely. Most of the γ rays originate in the ³⁶Ar(p,p) dataset.

 \neg

[‡] From ³⁶Ar(p,p), unless noted otherwise. [#] From $\gamma(\theta)$ in ³⁶Ar(p,p), unless noted otherwise.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

9--18

9

 $^{37}_{19}\mathrm{K}_{18}$ -9

From ENSDF

 $^{37}_{19}\mathrm{K}_{18}$ -9