$C(^{38}Ca,n\gamma),H(^{38}Ca,n\gamma)$ 2009AmZZ

History

Type Author Citation Literature Cutoff Date
Full Evaluation John Cameron, Jun Chen and Balraj Singh, Ninel Nica NDS 113, 365 (2012) 15-Jan-2012

2009AmZZ: 40 Ca primary beam at 140 MeV/nucleon bombarded 9 BE target, fragments analyzed by A1900 separator. 38 Ca fragment beam bombarded a reaction target of polypropylene ($[C_3H_6]_n$) to get excitations in 37 Ca through one-neutron removal process. Measured E γ , I γ , (37 Ca recoil) γ -coin using SeGA array.

Additional information 1.

E(resonance) deduced in 2009AmZZ use S(p)(³⁷Ca)=3025 24 from 2003Au03. Updated and precise value of S(p) is 3007.4 9 (2011AuZZ), which would give resonance energies higher by about 18 keV.

³⁷Ca Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments				
0	$(3/2^+)$	J^{π} : mirror state of ³⁷ Cl g.s., $3/2^+$.				
1606.4 <i>13</i>	1/2+					
2939.0 <i>16</i>	$(3/2^+,5/2^+)$					
3103.7 <i>16</i>	7/2-	T _{1/2} : estimated (by 2009AmZZ) as greater than a few picoseconds from Doppler-shift in energy between the two sets of rings in SeGA array.				
		Deduced E(resonance)=106.				
3354 2	$(3/2^+,5/2^-)$	Deduced E(resonance)=356.				
3530 <i>3</i>	$(3/2^+,5/2^-)$	Deduced E(resonance)=532.				
3612 <i>4</i>	$(3/2^+,5/2^-)$	Deduced E(resonance)=614.				
3842 <i>4</i>	3/2+	Deduced E(resonance)=844.				

[†] Deduced by 2009AmZZ from GEANT3 response function of γ spectrum detected in SeGA array in coincidence with ³⁷Ca recoils.

γ (37Ca)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
≈1300 [†]	2939.0	$(3/2^+,5/2^+)$			
1606.4 <i>13</i>	1606.4	1/2+	0	$(3/2^+)$	
1750	3354	$(3/2^+,5/2^-)$	1606.4	$1/2^{+}$	
2230	3842	3/2+	1606.4	$1/2^{+}$	2230y observed in coin with ³⁷ Ca recoils.
2939.0 <i>16</i>	2939.0	$(3/2^+,5/2^+)$	0	$(3/2^+)$	
3103.7 <i>16</i>	3103.7	$7/2^{-}$	0	$(3/2^+)$	
3354 2	3354	$(3/2^+,5/2^-)$	0	$(3/2^+)$	
3530 <i>3</i>	3530	$(3/2^+,5/2^-)$	0	$(3/2^+)$	
3612 <i>4</i>	3612	$(3/2^+,5/2^-)$	0	$(3/2^+)$	
3842 <i>4</i>	3842	3/2+	0	$(3/2^+)$	

[†] Placement of transition in the level scheme is uncertain.

[‡] Assigned by 2009AmZZ based on comparison with mirror nucleus ³⁷Cl and decay pattern. All assignments are considered tentative by the evaluators. See also arguments in Adopted Levels.

$C(^{38}Ca,n\gamma),H(^{38}Ca,n\gamma)$ 2009AmZZ

Level Scheme

