26 Mg(14 N,p2n γ), 24 Mg(18 O, α n γ) 1976Wa11

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	John Cameron, Jun Chen and Balraj Singh, Ninel Nica	NDS 113, 365 (2012)	15-Jan-2012

1976Wa11, also 1975Ol01: ²⁶Mg(¹⁴N,p2n γ), ²⁴Mg(¹⁸O, α n γ) E=40 MeV. Measured E(γ), γ - γ coincidences, $\gamma(\theta$,pol), T_{1/2} from RDM.

1976Po03 (same group As 1976Wa11): 27 Al(19 F,2 α n γ) E=40 MeV, measured 1611 γ .

1976Me03: ²⁷Al(¹²C,pn γ) E=31 MeV, measured T_{1/2} from RDM.

1991Ja11: ²⁷Al(¹⁶O, α pn γ) E=60 MeV, measured T_{1/2} from RDM.

All the data are from 1976Wa11, unless noted otherwise.

³⁷Ar Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3/2+		
1611.29 9	$7/2^{-}$		J^{π} : $\Delta J=2$, M2+E3 γ to 3/2 ⁺ , g.s
2216.83 18	$7/2^{+}$		
3185.12 18	9/2-		
3706.29 20	$11/2^{-}$		
4022.10 24	9/2-		
4887.2 4			$\mathbf{J}^{\pi} \colon \ge 9/2.$
5213.45 20	$11/2^{+}$	4.2 ps 14	$T_{1/2}$: mean lifetime τ In ps: 6 2.
5793.6 <i>3</i>	$13/2^{-}$		
6151.06 25	$13/2^{+}$	2.8 ps 7	$T_{1/2}$: 2.1 <i>10</i> ps (1991Ja11); 3.1 7 ps (1976Wa11, from τ 4.5 <i>10</i>).
6473.88 25	15/2+	5.8 ps 5	$T_{1/2}$: weighted average of: 6.1 6 ps (1991Ja11); 6.2 <i>14</i> ps (1976Me03, from τ 9 2); 5.2 8 (1976Wa11, from τ 7.5 <i>12</i>).
7071.8 <i>3</i>	$17/2^{+}$	0.3 ps 3	$T_{1/2}$: from $\tau < 0.8$ ps (1976Me03).

[†] From least-squares fit to $E\gamma's$.

[‡] According to 1976Wa11, their J^{π} values given In the table are from ³⁴S(α ,n γ) dataset (1974Ga12 and 1975No01), which agrees with the J^{π} one can get from the $\gamma(\theta)$ and linear polarization of 1976Wa11.

 $\gamma(^{37}\text{Ar})$

For polarization from 1976Wa11 and 1975Ol01 positive (negative) values mean electric (magnetic) character respectively.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	Comments
1611.29	7/2-	1611.24 9	100	0.0	3/2+	M2+E3	-0.14 5	not resolved from 1612 γ In ²⁵ Mg. I γ (relative)=131. Mult., δ : Δ J=2, M2+E3 G.
2216.83	7/2+	2216.80 20	100	0.0	3/2+	Q(+O)	-0.03 5	A ₂ =+0.14 2, A ₄ =-0.05 2, POL=-0.14 5. Iy(relative)=53.3. Mult. δ : Δ J=2, Q(+O) G. A ₂ =+0.26 3 A ₂ =-0.02 14 POL=-0.7.7
3185.12	9/2-	1573.68 20	100	1611.29	7/2-	M1+E2	+0.49 8	$A_2 = +0.20$ s, $A_4 = -0.02$ 14, FOL = -0.17. $I\gamma$ (relative) = 55.2. Mult. δ : $\Delta J = 1$, M1+E2 G. $A_2 = +0.32$ $A_4 = +0.07$ 5, POL = -0.54.20
3706.29	11/2-	521.12 25	18 2	3185.12	9/2-	D(+Q)	+0.03 10	$I_2 = -0.54 20$, $I_4 = -0.07 5$, $I OL = -0.54 20$. I_2 (relative)=13.6. Mult., δ : Δ J=1, D(+Q) G.
		2094.9 3	82 2	1611.29	7/2-	E2		A ₂ =-0.25 10, A ₄ =0. I γ (relative)=52.6. Mult., δ : Δ J=2, E2 γ (δ =-0.02 3 for E2(+M3)

Continued on next page (footnotes at end of table)

1976Wa11 (continued)

 26 Mg(14 N,p2n γ), 24 Mg(18 O, α n γ)

$\gamma(^{37}\text{Ar})$ (continued) I_{γ}^{\dagger} E_i (level) J_i^{π} Eγ \mathbf{E}_{f} J_f^{π} Mult. δ Comments γ). $A_2 = +0.24 \ 13, A_4 = -0.04 \ 3, POL = +0.47 \ 28.$ 4022.10 $9/2^{-}$ 836.9 4 36 4 3185.12 9/2- $I\gamma$ (relative)=2.6. 1805.4 4 58 6 2216.83 7/2+ $I\gamma$ (relative)=4.3. 2411.2 6 62 1611.29 7/2- $I\gamma$ (relative)=0.44. 4887.2 1180.9 7 100 3706.29 11/2- $I\gamma$ (relative)=3.5. $I\gamma$ (relative)=4.3. 5213.45 $11/2^{+}$ 1191.5 3 12 3 4022.10 9/2-D+Q +0.115Mult., δ : $\Delta J=1$, D+O G. $A_2 = -0.05 3, A_4 = 0.$ 1506.98 20 41 4 3706.29 11/2--0.09 6 $I\gamma$ (relative)=14.7. (D+Q)Mult., δ : $\Delta J=(1)$, (D+Q) G. $A_2 + 0.32$ 4, $A_4 = +0.09$ 4. 2028.3 4 16 4 3185.12 9/2- $I\gamma$ (relative)=7.3. 2996.5 5 25 4 2216.83 7/2+ (Q) $I\gamma$ (relative)=8.2. Mult., δ : $\Delta J=(2)$, (Q(+O)) γ with possibly $\delta = +0.08 \ 8.$ $A_2 = +0.35 6, A_4 = +0.06 6.$ 3602.2 5 63 1611.29 7/2- $I\gamma$ (relative)=2.1. 5793.6 $13/2^{-}$ 2087.80 50 60 10 3706.29 11/2- $I\gamma$ (relative)=4.0. 2608.15 35 40 10 3185.12 9/2- $I\gamma$ (relative)=6.2, according to 1976Wa11 May Be low by a factor of two. δ : -0.05 5 (1976Wa11 do not give any multipoles and based on $\gamma(\theta)$ No assignment can Be adopted by evaluators either; E2 from level scheme). A₂=+0.06 *16*, A₄=0. 6151.06 75 5 5213.45 11/2+ M1+E2 +0.14 3 $I\gamma$ (relative)=(19.6), not resolved from $13/2^{+}$ 937.55 20 937.21y In ¹⁸F (1976Wa11). Mult., δ : $\Delta J=1$, M1+E2 G. A₂=-0.17 5, A₄=+0.11 5, POL=-0.43 15. $I\gamma$ (relative)=9.1. 1263.8 3 25 5 4887.2 6473.88 $15/2^{+}$ 322.80 12 67 5 6151.06 13/2+ M1+E2 -0.10 3 $I\gamma$ (relative)=22.3. Mult., δ : $\Delta J=1$, M1+E2 G. $A_2 = -0.36 \ 3, \ A_4 = +0.01 \ 4, \ POL = -0.20 \ 10.$ $I\gamma$ (relative)=(9.5), not resolved from 680.22 680.34 20 28.5 5793.6 $13/2^{-}$ 15 γ In ³⁵Cl (1976Wa11). δ : -0.04 3 (1976Wall do not give any 1260.45 30 52 5213.45 11/2+ multipoles and based on $\gamma(\theta)$ No assignment can tepmted by evaluators either; E2 from level scheme). $A_2 = +0.36 \ 12, \ A_4 = 0.$ 7071.8 100 6473.88 15/2+ M1(+E2) -0.03 3 $17/2^{+}$ 597.92 15 $I\gamma$ (relative)=12.0. Mult., δ : $\Delta J=1$, M1(+E2) γ (with $\delta = -0.03$ 3).

[†] Branching ratios with uncertainties from 1976Wal1, while relative γ intensities from same reference (with No uncertainties In 1976Wal1) are given In comments.

A₂=-0.29 8, A₄=+0.10 10, POL=-0.22 14.

26 Mg(14 N,p2n γ), 24 Mg(18 O, α n γ) 1976Wa11

Level Scheme

Intensities: % photon branching from each level

