Adopted Levels, Gammas

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Ninel Nica, John Cameron and Balraj Singh	NDS 113,1 (2012)	31-Dec-2011

 $Q(\beta^{-}) = -2.18 \times 10^{4} \text{ syst}; S(n) = 1.931 \times 10^{4} \text{ syst}; S(p) = 2.57 \times 10^{3} 4; Q(\alpha) = -6.68 \times 10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record 19310 syst 2567 40 -6676 40 2011AuZZ.

Q(\varepsilon)=9307 40, S(2n)=36445 301 (syst), S(2p)=2652 40 (2011AuZZ).

Values in 2003Au03: $S(n)=19110\ 200\ (syst)$, $S(p)=2560\ 40$, $Q(\alpha)=-6660\ 40$, $S(2n)=35740\ 300\ (syst)$, $S(2p)=2640\ 40$, $Q(\varepsilon p)=9320\ 40$.

1977Tr03: First report on ³⁶Ca nuclide from mass excess in reaction: ⁴⁰Ca(⁴He,⁸He), deduced mass excess.

1981Ay01: First identification of this nuclide in reaction: ${}^{40}Ca({}^{3}He,\alpha 3n)$ at 95 MeV. Measured delayed proton decay and isotopic half-life; Berkeley cyclotron facility and recoil-atom mass analyzer.

1995Ga16: ³⁶Ca produced using a radioactive ion beam from ISOLDE online isotope separator with a Ti target at CERN, measured delayed proton decay of ³⁶Ca.

1997Tr05, 1995Tr02: ³⁶Ca produced by fragmentation of ⁴⁰Ca beam with a ⁹Be target at 300 MeV/nucleon beam energy,

fragments separated using FRS facility at GSI. Measured delayed proton branches and isotopic half-life.

2001Lo11: ³⁶Ca produced by fragmentation of ⁴⁰Ca beam at 95 MeV/ nucleon with Ni target, fragments separated with LISE3 spectrometer at GANIL facility. Measured delayed proton branches.

2007Do11, 2007Bu15: ${}^{9}Be({}^{37}Ca,X\gamma)$ one-neutron knockout reaction (GSA and GANIL), identification of first 2⁺ state.

³⁶Sc nuclide which can possibly decay by β to ³⁶Ca is not yet identified.

³⁷Sc nuclide which can possibly decay by protons to ³⁶Ca is not yet identified.

³⁷Ti nuclide which can possibly decay by β -delayed protons to ³⁶Ca is not yet identified.

³⁸Ti nuclide which will most likely decay by two-proton emission to ³⁶Ca is not yet identified but its search and upper limit of 120 ns for half-life has been reported by 1996BI21.

Additional information 1.

³⁶Ca Levels

Cross Reference (XREF) Flags

9 Be(37 Ca,X γ)	
------------------------------------	--

B $C(^{38}Ca,2n\gamma),H(^{38}Ca,2n\gamma)$

C ⁴⁰Ca(⁴He,⁸He)

E(level)	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0	0+	101.2 ms 20	ABC	%ε+%β ⁺ =100; %εp=51.2 10 (2007Do11) %εp: from 2007Do11. Others: 54.3% 15 (2001Lo11) is an earlier measurement from GANIL, same lab as 2007Do17, 57% 5 (or 14) (1997Tr05,1995Tr02), ≈20
2045.0.24	(2+)			(1981Ay01). $T_{1/2}$: from timing of β (proton) correlated events. Weighted average of 100.1 ms 23 (2007Do17) and 102 ms 2 (1995Tr02,1997Tr05). Other: 100 ms +90-40 (1981Ay01).
3045.0 24	(2+)		AB	J [*] : from systematics and shell model calculations. E(level): from mirror energy difference $\Delta E_M = E({}^{36}Ca) - E({}^{36}S) = -246$ 3 for the first excited 2 ⁺ states in ${}^{36}Ca$ and ${}^{36}S$. The energy of the 2 ⁺ excited state in ${}^{36}S$ is at 3291 keV from Adopted Levels. 2007Do11 interpret this large ΔE_M value in terms of detailed shell-model calculations using ${}^{16}O$ core, the <i>sd</i> shell isospin symmetric interaction, and experimental single particle energies from ${}^{17}O$ and ${}^{17}F$.

Estimated $\Delta S(n)=200$ (2011AuZZ).

Adopted Levels, Gammas (continued)

$\gamma(^{36}Ca)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	$\mathbf{E}_f \ \mathbf{J}_f^{\pi}$	Comments
3045.0	(2 ⁺)	3045.0 24	0 0+	E _γ : from C,H(³⁸ Ca,2nγ) (2009AmZZ). Others: 3015 <i>16</i> (2007Do11), 3036 <i>11</i> (2007Bu15) given in ⁹ Be(³⁷ Ca,Xγ) dataset.
				Adopted Levels, Gammas
				Level Scheme
				<u>(2⁺) ~ 3045.0</u>
				0^+ 0 101.2 ms 20

 $^{36}_{20}{
m Ca}_{16}$